Extraction of roads from high-resolution aerial images with a high degree of accuracy is a prerequisite in various applications. In aerial images, road pixels and background pixels are generally in the ratio of ones-to-tens, which implies a class imbalance problem. Existing semantic segmentation architectures generally do well in road-dominated cases but fail in background-dominated scenarios. This paper proposes a dense refinement residual network (DRR Net) for semantic segmentation of aerial imagery data. The proposed semantic segmentation architecture is composed of multiple DRR modules for the extraction of diversified roads alleviating the class imbalance problem. Each module of the proposed architecture utilizes dense convolutions at various scales only in the encoder for feature learning. Residual connections in each module of the proposed architecture provide the guided learning path by propagating the combined features to subsequent DRR modules. Segmentation maps undergo various levels of refinement based on the number of DRR modules utilized in the architecture. To emphasize more on small object instances, the proposed architecture has been trained with a composite loss function. The qualitative and quantitative results are reported by utilizing the Massachusetts roads dataset. The experimental results report that the proposed architecture provides better results as compared to other recent architectures.

Dense Refinement Residual Network for Road Extraction From Aerial Imagery Data

LAL, SHYAM;Dell'Acqua, Fabio;
2019-01-01

Abstract

Extraction of roads from high-resolution aerial images with a high degree of accuracy is a prerequisite in various applications. In aerial images, road pixels and background pixels are generally in the ratio of ones-to-tens, which implies a class imbalance problem. Existing semantic segmentation architectures generally do well in road-dominated cases but fail in background-dominated scenarios. This paper proposes a dense refinement residual network (DRR Net) for semantic segmentation of aerial imagery data. The proposed semantic segmentation architecture is composed of multiple DRR modules for the extraction of diversified roads alleviating the class imbalance problem. Each module of the proposed architecture utilizes dense convolutions at various scales only in the encoder for feature learning. Residual connections in each module of the proposed architecture provide the guided learning path by propagating the combined features to subsequent DRR modules. Segmentation maps undergo various levels of refinement based on the number of DRR modules utilized in the architecture. To emphasize more on small object instances, the proposed architecture has been trained with a composite loss function. The qualitative and quantitative results are reported by utilizing the Massachusetts roads dataset. The experimental results report that the proposed architecture provides better results as compared to other recent architectures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1288706
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact