Three-dimensional (3D) printing is a disruptive technology that is quickly spreading to many fields, including healthcare. In this context, it allows the creation of graspable, patient-specific, anatomical models generated from medical images. The ability to hold and show a physical object speeds up and facilitates the understanding of anatomical details, eases patient counseling and contributes to the education and training of students and residents. Several medical specialties are currently exploring the potential of this technology, including general surgery. METHODS: In this review, we provide an overview on the available 3D printing technologies, together with a systematic analysis of the medical literature dedicated to its application for abdominal surgery. Our experience with the first clinical laboratory for 3D printing in Italy is also reported. RESULTS: There was a tenfold increase in the number of publications per year over the last decade. About 70% of these papers focused on kidney and liver models, produced primarily for pre-interventional planning, as well as for educational and training purposes. The most used printing technologies are material jetting and material extrusion. Seventy-three percent of publications reported on fewer than ten clinical cases. CONCLUSION: The increasing application of 3D printing in abdominal surgery reflects the dawn of a new technology, although it is still in its infancy. The potential benefit of this technology is clear, however, and it may soon lead to the development of new hospital facilities to improve surgical training, research, and patient care.
An overview on 3D printing for abdominal surgery
Pietrabissa A.;Marconi S.;Negrello E.;Mauri V.;Marone E. M.;Auricchio F.
2020-01-01
Abstract
Three-dimensional (3D) printing is a disruptive technology that is quickly spreading to many fields, including healthcare. In this context, it allows the creation of graspable, patient-specific, anatomical models generated from medical images. The ability to hold and show a physical object speeds up and facilitates the understanding of anatomical details, eases patient counseling and contributes to the education and training of students and residents. Several medical specialties are currently exploring the potential of this technology, including general surgery. METHODS: In this review, we provide an overview on the available 3D printing technologies, together with a systematic analysis of the medical literature dedicated to its application for abdominal surgery. Our experience with the first clinical laboratory for 3D printing in Italy is also reported. RESULTS: There was a tenfold increase in the number of publications per year over the last decade. About 70% of these papers focused on kidney and liver models, produced primarily for pre-interventional planning, as well as for educational and training purposes. The most used printing technologies are material jetting and material extrusion. Seventy-three percent of publications reported on fewer than ten clinical cases. CONCLUSION: The increasing application of 3D printing in abdominal surgery reflects the dawn of a new technology, although it is still in its infancy. The potential benefit of this technology is clear, however, and it may soon lead to the development of new hospital facilities to improve surgical training, research, and patient care.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.