Polymeric nanoparticles based on cyclodextrins are currently undergoing clinical trials as new promising nanotherapeutics. In light of this interest, we investigated cyclodextrin cross-linked polymers with different lengths as carriers for the poorly water-soluble drug sorafenib. Both polymers significantly enhanced sorafenib solubility, with shorter polymers showing the most effective solubilizing effect. Inclusion complexes between sorafenib and the investigated polymers exhibited an antiproliferative effect in tumor cells similar to that of free sorafenib. Polymer/Sorafenib complexes also showed lower in vivo tissue toxicity than with free sorafenib in all organs. Our results suggest that the inclusion of sorafenib in polymers represents a successful strategy for a new formulation of this drug.
Fibrin gels entrapment of a doxorubicin-containing targeted polycyclodextrin: Evaluation of in vivo antitumor activity in orthotopic models of human neuroblastoma
Priori E. C.Methodology
;Bertone V.Methodology
;
2019-01-01
Abstract
Polymeric nanoparticles based on cyclodextrins are currently undergoing clinical trials as new promising nanotherapeutics. In light of this interest, we investigated cyclodextrin cross-linked polymers with different lengths as carriers for the poorly water-soluble drug sorafenib. Both polymers significantly enhanced sorafenib solubility, with shorter polymers showing the most effective solubilizing effect. Inclusion complexes between sorafenib and the investigated polymers exhibited an antiproliferative effect in tumor cells similar to that of free sorafenib. Polymer/Sorafenib complexes also showed lower in vivo tissue toxicity than with free sorafenib in all organs. Our results suggest that the inclusion of sorafenib in polymers represents a successful strategy for a new formulation of this drug.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.