The typical vertebrate centromeres contain long stretches of highly repeated DNA sequences (satellite DNA). We previously demonstrated that the karyotypes of the species belonging to the genus Equus are characterized by the presence of satellite-free and satellite-based centromeres and represent a unique biological model for the study of centromere organization and behavior. Using horse primary fibroblasts cultured in vitro, we compared the segregation fidelity of chromosome 11, whose centromere is satellite-free, with that of chromosome 13, which has similar size and a centromere containing long stretches of satellite DNA. The mitotic stability of the two chromosomes was compared under normal conditions and under mitotic stress induced by the spindle inhibitor, nocodazole. Two independent molecular-cytogenetic approaches were used—the interphase aneuploidy analysis and the cytokinesis-block micronucleus assay. Both assays were coupled to fluorescence in situ hybridization with chromosome specific probes in order to identify chromosome 11 and chromosome 13, respectively. In addition, we tested if the lack of centromeric satellite DNA affected chromatid cohesion under normal and stress conditions. We demonstrated that, in our system, the segregation fidelity of a chromosome is not influenced by the presence of long stretches of tandem repeats at its centromere. To our knowledge, the present study is the first analysis of the mitotic behavior of a natural satellite-free centromere.
Satellite DNA at the centromere is dispensable for segregation fidelity
Roberti A.;Bensi M.;Mazzagatti A.;Piras F. M.;Nergadze S. G.;Giulotto E.
;Raimondi E.
2019-01-01
Abstract
The typical vertebrate centromeres contain long stretches of highly repeated DNA sequences (satellite DNA). We previously demonstrated that the karyotypes of the species belonging to the genus Equus are characterized by the presence of satellite-free and satellite-based centromeres and represent a unique biological model for the study of centromere organization and behavior. Using horse primary fibroblasts cultured in vitro, we compared the segregation fidelity of chromosome 11, whose centromere is satellite-free, with that of chromosome 13, which has similar size and a centromere containing long stretches of satellite DNA. The mitotic stability of the two chromosomes was compared under normal conditions and under mitotic stress induced by the spindle inhibitor, nocodazole. Two independent molecular-cytogenetic approaches were used—the interphase aneuploidy analysis and the cytokinesis-block micronucleus assay. Both assays were coupled to fluorescence in situ hybridization with chromosome specific probes in order to identify chromosome 11 and chromosome 13, respectively. In addition, we tested if the lack of centromeric satellite DNA affected chromatid cohesion under normal and stress conditions. We demonstrated that, in our system, the segregation fidelity of a chromosome is not influenced by the presence of long stretches of tandem repeats at its centromere. To our knowledge, the present study is the first analysis of the mitotic behavior of a natural satellite-free centromere.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.