Distorted representations of the body are observed in healthy individuals as well as in neurological and psychiatric disorders. Distortions of the body model have been attributed to the somatotopic cerebral representation. Recently, it has been demonstrated that visual biases also contribute to those distortions. To better understand the sources of such distortions, we compared the metric representations across five body parts affording different degrees of tactile sensitivity and visual accessibility. We evaluated their perceived dimensions using a Line Length Judgment task. We found that most body parts were underestimated in their dimensions. The estimation error relative to their length was predicted by their tactile acuity, supporting the influence of the cortical somatotopy on the body model. However, tactile acuity did not explain the distortions observed for the width. Visual accessibility in turn does appear to mediate body distortions, as we observed that the dimensions of the dorsal portion of the neck were the only ones accurately perceived. Coherent with the multisensory nature of body representations, we argue that the perceived dimensions of body parts are estimated by integrating visual and somatosensory information, each weighted differently, based on their availability for a given body part and a given spatial dimension.

Visual and somatosensory information contribute to distortions of the body model

Peviani V.;Bottini G.
2019-01-01

Abstract

Distorted representations of the body are observed in healthy individuals as well as in neurological and psychiatric disorders. Distortions of the body model have been attributed to the somatotopic cerebral representation. Recently, it has been demonstrated that visual biases also contribute to those distortions. To better understand the sources of such distortions, we compared the metric representations across five body parts affording different degrees of tactile sensitivity and visual accessibility. We evaluated their perceived dimensions using a Line Length Judgment task. We found that most body parts were underestimated in their dimensions. The estimation error relative to their length was predicted by their tactile acuity, supporting the influence of the cortical somatotopy on the body model. However, tactile acuity did not explain the distortions observed for the width. Visual accessibility in turn does appear to mediate body distortions, as we observed that the dimensions of the dorsal portion of the neck were the only ones accurately perceived. Coherent with the multisensory nature of body representations, we argue that the perceived dimensions of body parts are estimated by integrating visual and somatosensory information, each weighted differently, based on their availability for a given body part and a given spatial dimension.
File in questo prodotto:
File Dimensione Formato  
Peviani et al._SR_2019.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1316086
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact