Model predictive control (MPC) has a number of desirable attributes which are difficult to achieve with classical converter control techniques. Unfortunately, the nature of power electronics imposes restriction to the method, as a result of the limited number of available converter states. This, combined with the spread spectrum nature of harmonics inherent with the strategy, complicates further design. This paper presents a method for removing this characteristic without compromising the desirable functionality of predictive control. The method, named modulated MPC, is applied to a two-level three-phase converter and compared with a number of similar approaches. Experimental results are used to support theoretical analysis and simulation studies.
Modulated Model Predictive Control for a Three-Phase Active Rectifier
Zanchetta P.;Watson A.;
2015-01-01
Abstract
Model predictive control (MPC) has a number of desirable attributes which are difficult to achieve with classical converter control techniques. Unfortunately, the nature of power electronics imposes restriction to the method, as a result of the limited number of available converter states. This, combined with the spread spectrum nature of harmonics inherent with the strategy, complicates further design. This paper presents a method for removing this characteristic without compromising the desirable functionality of predictive control. The method, named modulated MPC, is applied to a two-level three-phase converter and compared with a number of similar approaches. Experimental results are used to support theoretical analysis and simulation studies.File | Dimensione | Formato | |
---|---|---|---|
Modulated Model Predictive Control for a Three-Phase Active Rectifier.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.