Whole-cell patch-clamp recordings in rat cerebellar slices were used to investigate the effect of metabotropic glutamate receptor activation on mossy fibre-granule cell synaptic transmission. Transient application of 20 microM 1S, 3R-aminocyclopentane-1, 3-dicarboxylic acid simultaneously with low-frequency NMDA receptor activation induced long-lasting non-decremental potentiation of both NMDA and non-NMDA receptor-mediated synaptic transmission. Potentiation could be prevented by application of the metabotropic glutamate receptor antagonist (+)-O-methyl-4-carboxyphenyl-glycine at 500 microM. Characteristically, NMDA potentiation was two to three times as large as non-NMDA current potentiation, occurred only in a slow subcomponent, and was voltage-independent. This result demonstrates a pivotal role of NMDA receptors in the metabotropic potentiation of transmission, which may be important in regulating cerebellar information processing.

Differential long-lasting potentiation of the NMDA and non-NMDA synaptic currents induced by metabotropic and NMDA receptor coactivation in cerebellar granule cells

ROSSI, PAOLA;D'ANGELO, EGIDIO UGO;TAGLIETTI, VANNI
1996-01-01

Abstract

Whole-cell patch-clamp recordings in rat cerebellar slices were used to investigate the effect of metabotropic glutamate receptor activation on mossy fibre-granule cell synaptic transmission. Transient application of 20 microM 1S, 3R-aminocyclopentane-1, 3-dicarboxylic acid simultaneously with low-frequency NMDA receptor activation induced long-lasting non-decremental potentiation of both NMDA and non-NMDA receptor-mediated synaptic transmission. Potentiation could be prevented by application of the metabotropic glutamate receptor antagonist (+)-O-methyl-4-carboxyphenyl-glycine at 500 microM. Characteristically, NMDA potentiation was two to three times as large as non-NMDA current potentiation, occurred only in a slow subcomponent, and was voltage-independent. This result demonstrates a pivotal role of NMDA receptors in the metabotropic potentiation of transmission, which may be important in regulating cerebellar information processing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/132014
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact