The purpose of this study was to measure the sodium transverse relaxation time T2* in the healthy human brain. Five healthy subjects were scanned with 18 echo times (TEs) as short as 0.17 ms. T2* values were fitted on a voxel-by-voxel basis using a bi-exponential model. Data were also analysed using a continuous distribution fit with a region of interest-based inverse Laplace transform. Average T2* values were 3.4 ± 0.2 ms and 23.5 ± 1.8 ms in white matter (WM) for the short and long components, respectively, and 3.9 ± 0.5 ms and 26.3 ± 2.6 ms in grey matter (GM) for the short and long components, respectively, using the bi-exponential model. Continuous distribution fits yielded results of 3.1 ± 0.3 ms and 18.8 ± 3.2 ms in WM for the short and long components, respectively, and 2.9 ± 0.4 ms and 17.2 ± 2 ms in GM for the short and long components, respectively. 23Na T2* values of the brain for the short and long components for various anatomical locations using ultra-short TEs are presented for the first time.

Bi-exponential 23Na T2* component analysis in the human brain

Gandini C.;
2018-01-01

Abstract

The purpose of this study was to measure the sodium transverse relaxation time T2* in the healthy human brain. Five healthy subjects were scanned with 18 echo times (TEs) as short as 0.17 ms. T2* values were fitted on a voxel-by-voxel basis using a bi-exponential model. Data were also analysed using a continuous distribution fit with a region of interest-based inverse Laplace transform. Average T2* values were 3.4 ± 0.2 ms and 23.5 ± 1.8 ms in white matter (WM) for the short and long components, respectively, and 3.9 ± 0.5 ms and 26.3 ± 2.6 ms in grey matter (GM) for the short and long components, respectively, using the bi-exponential model. Continuous distribution fits yielded results of 3.1 ± 0.3 ms and 18.8 ± 3.2 ms in WM for the short and long components, respectively, and 2.9 ± 0.4 ms and 17.2 ± 2 ms in GM for the short and long components, respectively. 23Na T2* values of the brain for the short and long components for various anatomical locations using ultra-short TEs are presented for the first time.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1320548
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact