The progression of Alzheimer's dementia is associated with neurovasculature impairment, which includes inflammation, microthromboses, and reduced cerebral blood flow. Here, we investigate the effects of β amyloid peptides on the function of platelets, the cells driving haemostasis. Amyloid peptide β1-42 (Aβ1-42), Aβ1-40, and Aβ25-35 were tested in static adhesion experiments, and it was found that platelets preferentially adhere to Aβ1-42 compared to other Aβ peptides. In addition, significant platelet spreading was observed over Aβ1-42, while Aβ1-40, Aβ25-35, and the scAβ1-42 control did not seem to induce any platelet spreading, which suggested that only Aβ1-42 activates platelet signalling in our experimental conditions. Aβ1-42 also induced significant platelet adhesion and thrombus formation in whole blood under venous flow condition, while other Aβ peptides did not. The molecular mechanism of Aβ1-42 was investigated by flow cytometry, which revealed that this peptide induces a significant activation of integrin αIIbβ3, but does not induce platelet degranulation (as measured by P-selectin membrane translocation). Finally, Aβ1-42 treatment of human platelets led to detectable levels of protein kinase C (PKC) activation and tyrosine phosphorylation, which are hallmarks of platelet signalling. Interestingly, the NADPH oxidase (NOX) inhibitor VAS2870 completely abolished Aβ1-42-dependent platelet adhesion in static conditions, thrombus formation in physiological flow conditions, integrin αIIbβ3 activation, and tyrosine- and PKC-dependent platelet signalling. In summary, this study highlights the importance of NOXs in the activation of platelets in response to amyloid peptide β1-42. The molecular mechanisms described in this manuscript may play an important role in the neurovascular impairment observed in Alzheimer's patients.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Amyloid peptide β 1-42 induces integrin α IIb β 3 activation, platelet adhesion, and thrombus formation in a NADPH Oxidase-Dependent Manner | |
Autori: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Abstract: | The progression of Alzheimer's dementia is associated with neurovasculature impairment, which includes inflammation, microthromboses, and reduced cerebral blood flow. Here, we investigate the effects of β amyloid peptides on the function of platelets, the cells driving haemostasis. Amyloid peptide β1-42 (Aβ1-42), Aβ1-40, and Aβ25-35 were tested in static adhesion experiments, and it was found that platelets preferentially adhere to Aβ1-42 compared to other Aβ peptides. In addition, significant platelet spreading was observed over Aβ1-42, while Aβ1-40, Aβ25-35, and the scAβ1-42 control did not seem to induce any platelet spreading, which suggested that only Aβ1-42 activates platelet signalling in our experimental conditions. Aβ1-42 also induced significant platelet adhesion and thrombus formation in whole blood under venous flow condition, while other Aβ peptides did not. The molecular mechanism of Aβ1-42 was investigated by flow cytometry, which revealed that this peptide induces a significant activation of integrin αIIbβ3, but does not induce platelet degranulation (as measured by P-selectin membrane translocation). Finally, Aβ1-42 treatment of human platelets led to detectable levels of protein kinase C (PKC) activation and tyrosine phosphorylation, which are hallmarks of platelet signalling. Interestingly, the NADPH oxidase (NOX) inhibitor VAS2870 completely abolished Aβ1-42-dependent platelet adhesion in static conditions, thrombus formation in physiological flow conditions, integrin αIIbβ3 activation, and tyrosine- and PKC-dependent platelet signalling. In summary, this study highlights the importance of NOXs in the activation of platelets in response to amyloid peptide β1-42. The molecular mechanisms described in this manuscript may play an important role in the neurovascular impairment observed in Alzheimer's patients. | |
Handle: | http://hdl.handle.net/11571/1322586 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |