When tuning the smoothness parameter of nonparametric regression splines, the evaluation of the so-called degrees of freedom is one of the most computer-intensive tasks. In the paper, a closed-form expression of the degrees of freedom is obtained for the case of cubic splines and equally spaced data when the number of data tends to infinity. State-space methods, Kalman filtering and spectral factorization techniques are used to prove that the asymptotic degrees of freedom are equal to the variance of a suitably defined stationary process. The closed-form expression opens the way to fast spline smoothing algorithms whose computational complexity is about one-half of standard methods (or even one-fourth under further approximations).

Fast spline smoothing via spectral factorization concepts

DE NICOLAO, GIUSEPPE;FERRARI TRECATE, GIANCARLO;
2000-01-01

Abstract

When tuning the smoothness parameter of nonparametric regression splines, the evaluation of the so-called degrees of freedom is one of the most computer-intensive tasks. In the paper, a closed-form expression of the degrees of freedom is obtained for the case of cubic splines and equally spaced data when the number of data tends to infinity. State-space methods, Kalman filtering and spectral factorization techniques are used to prove that the asymptotic degrees of freedom are equal to the variance of a suitably defined stationary process. The closed-form expression opens the way to fast spline smoothing algorithms whose computational complexity is about one-half of standard methods (or even one-fourth under further approximations).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/132309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact