Phytic acid, myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the major storage compound of phosphorous (P) in plants, predominantly accumulating in seeds (up to 4-5% of dry weight) and pollen. In cereals, phytic acid is deposited in embryo and aleurone grain tissues as a mixed 'phytate' salt of potassium and magnesium, although phytates contain other mineral cations such as iron and zinc. During germination, phytates are broken down by the action of phytases, releasing their P, minerals and myo-inositol which become available to the growing seedling. Phytic acid represents an anti-nutritional factor for animals, and isolation of maize low phytic acid (lpa) mutants provides a novel approach to study its biochemical pathway and to tackle the nutritional problems associated with it. Following chemical mutagenesis of pollen, we have isolated a viable recessive mutant named lpa 241 showing about 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization experiments carried out by SSR mapping, MDD-HPLC and RT-PCR are consistent with a mutation affecting the MIPS1S gene, coding for the first enzyme of the phytic acid biosynthetic pathway

Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241)

NIELSEN, ERIK
2003-01-01

Abstract

Phytic acid, myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the major storage compound of phosphorous (P) in plants, predominantly accumulating in seeds (up to 4-5% of dry weight) and pollen. In cereals, phytic acid is deposited in embryo and aleurone grain tissues as a mixed 'phytate' salt of potassium and magnesium, although phytates contain other mineral cations such as iron and zinc. During germination, phytates are broken down by the action of phytases, releasing their P, minerals and myo-inositol which become available to the growing seedling. Phytic acid represents an anti-nutritional factor for animals, and isolation of maize low phytic acid (lpa) mutants provides a novel approach to study its biochemical pathway and to tackle the nutritional problems associated with it. Following chemical mutagenesis of pollen, we have isolated a viable recessive mutant named lpa 241 showing about 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization experiments carried out by SSR mapping, MDD-HPLC and RT-PCR are consistent with a mutation affecting the MIPS1S gene, coding for the first enzyme of the phytic acid biosynthetic pathway
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/132642
Citazioni
  • ???jsp.display-item.citation.pmc??? 34
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 113
social impact