5-hydroxymethyl-cytosine (5-hmC) is a cytosine modification that is relatively abundant in mammalian pre-implantation embryos and embryonic stem cells (ESC) derived from mammalian blastocysts. Recent observations imply that both 5-hmC and Tet1/2/3 proteins, catalyzing the conversion of 5-methyl-cytosine to 5-hmC, may play an important role in self renewal and differentiation of ESCs. Here we assessed the distribution of 5-hmC in zebrafish and chick embryos and found that, unlike in mammals, 5-hmC is immunochemically undetectable in these systems before the onset of organogenesis. In addition, Tet1/2/3 transcripts are either low or undetectable at corresponding stages of zebrafish development. However, 5-hmC is enriched in later zebrafish and chick embryos and exhibits tissue-specific distribution in adult zebrafish. Our findings show that 5-hmC enrichment of non-committed cells is not a universal feature of vertebrate development and give insights both into evolution of embryonic pluripotency and the potential role of 5-hmC in its regulation. © 2012 Landes Bioscience.

5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development

Sottile V.;
2012-01-01

Abstract

5-hydroxymethyl-cytosine (5-hmC) is a cytosine modification that is relatively abundant in mammalian pre-implantation embryos and embryonic stem cells (ESC) derived from mammalian blastocysts. Recent observations imply that both 5-hmC and Tet1/2/3 proteins, catalyzing the conversion of 5-methyl-cytosine to 5-hmC, may play an important role in self renewal and differentiation of ESCs. Here we assessed the distribution of 5-hmC in zebrafish and chick embryos and found that, unlike in mammals, 5-hmC is immunochemically undetectable in these systems before the onset of organogenesis. In addition, Tet1/2/3 transcripts are either low or undetectable at corresponding stages of zebrafish development. However, 5-hmC is enriched in later zebrafish and chick embryos and exhibits tissue-specific distribution in adult zebrafish. Our findings show that 5-hmC enrichment of non-committed cells is not a universal feature of vertebrate development and give insights both into evolution of embryonic pluripotency and the potential role of 5-hmC in its regulation. © 2012 Landes Bioscience.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1327048
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 43
social impact