The adult brain is known to retain a population of stem cells with self-renewing and differentiation ability, which have been identified in two main regions. Recent reports now suggest the presence of such cells in the cerebellum, a part of the CNS which was not formerly thought to harbour stem cells. The precise nature and localisation of these potential new stem cells within the tissue remains unclear, as they have primarily been described at early postnatal stages, before completion of the extensive cell migration accompanying cerebellum maturation. We have shown that a discrete cell population of the cerebellar cortex, the Bergmann glia, shares the expression of key molecular markers with neural stem cells. We examine the hypothesis that the Bergmann glia may represent a novel and abundant stem cell population in the mature cerebellum. © 2007.
Bergmann glia as putative stem cells of the mature cerebellum
Sottile V.
2007-01-01
Abstract
The adult brain is known to retain a population of stem cells with self-renewing and differentiation ability, which have been identified in two main regions. Recent reports now suggest the presence of such cells in the cerebellum, a part of the CNS which was not formerly thought to harbour stem cells. The precise nature and localisation of these potential new stem cells within the tissue remains unclear, as they have primarily been described at early postnatal stages, before completion of the extensive cell migration accompanying cerebellum maturation. We have shown that a discrete cell population of the cerebellar cortex, the Bergmann glia, shares the expression of key molecular markers with neural stem cells. We examine the hypothesis that the Bergmann glia may represent a novel and abundant stem cell population in the mature cerebellum. © 2007.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.