Purpose. The purpose of this review was to identify the best solution for rapid and noninvasive diagnosis and long-term monitoring of patients affected by inflammatory gastrointestinal diseases, colon and gastric cancer, obesity in correlation to diet, and breast milk to evaluate exposure to VOCs in women and infants. Methods. This review included 20 previously published eligible studies. VOC analysis has allowed us to highlight differences in lifestyles, intestinal microbiota, and metabolism. New innovative methods have been described that allow the detection and quantification of a broad spectrum of metabolites present in exhaled breath even at very low levels, some of which have been shown to be indicators of pathological conditions. Results. Five studies were analyzed that involved VOC analysis in relation to type of diet. All of them showed that the type of diet can have an impact on metabolites excreted and therefore can be a useful tool in the nutritional studies related to metabolism and health and disease status. Two studies concerned VOC analysis in inflammatory bowel diseases, and the results showed that VOCs can distinguish active disease from remission; VOC profile is clearly different in patients. In particular, C15H30 1-pentadecene, 3-methyl-1-butanal, octane, acetic acid, alpha-pinene, and m-cymene are elevated in active ulcerative colitis. Four studies examined VOCs in gastric and colorectal tumors showing a change in metabolic biomarkers of cancer patients compared to the control group. Finally, the study of VOCs in breast milk has improved the understanding of the potential health risks of exposure of children to chemical pollutants. Conclusions. VOC analysis allowed to highlight differences in behavior, lifestyle, and metabolism of individuals. Analytical methods are continuously developed to allow for better detection and quantification of metabolites, thus enabling the detection of a broader spectrum of pathophysiology and disease biomarkers.
Volatile organic compounds as biomarkers of gastrointestinal diseases and nutritional status
Rondanelli M.;Perdoni F.;Infantino V.;Faliva M. A.;Peroni G.;Nichetti M.;Perna S.;
2019-01-01
Abstract
Purpose. The purpose of this review was to identify the best solution for rapid and noninvasive diagnosis and long-term monitoring of patients affected by inflammatory gastrointestinal diseases, colon and gastric cancer, obesity in correlation to diet, and breast milk to evaluate exposure to VOCs in women and infants. Methods. This review included 20 previously published eligible studies. VOC analysis has allowed us to highlight differences in lifestyles, intestinal microbiota, and metabolism. New innovative methods have been described that allow the detection and quantification of a broad spectrum of metabolites present in exhaled breath even at very low levels, some of which have been shown to be indicators of pathological conditions. Results. Five studies were analyzed that involved VOC analysis in relation to type of diet. All of them showed that the type of diet can have an impact on metabolites excreted and therefore can be a useful tool in the nutritional studies related to metabolism and health and disease status. Two studies concerned VOC analysis in inflammatory bowel diseases, and the results showed that VOCs can distinguish active disease from remission; VOC profile is clearly different in patients. In particular, C15H30 1-pentadecene, 3-methyl-1-butanal, octane, acetic acid, alpha-pinene, and m-cymene are elevated in active ulcerative colitis. Four studies examined VOCs in gastric and colorectal tumors showing a change in metabolic biomarkers of cancer patients compared to the control group. Finally, the study of VOCs in breast milk has improved the understanding of the potential health risks of exposure of children to chemical pollutants. Conclusions. VOC analysis allowed to highlight differences in behavior, lifestyle, and metabolism of individuals. Analytical methods are continuously developed to allow for better detection and quantification of metabolites, thus enabling the detection of a broader spectrum of pathophysiology and disease biomarkers.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.