Inherited pyrimidine 5'-nucleotidase type I (P5'N-1) deficiency is the third most common erythrocyte enzymopathy that causes hemolysis. Fourteen different mutations have been identified to date. We have investigated the molecular bases of the disease by studying the biochemical properties of the recombinant wild-type human enzyme and 4 variant proteins (D87V, L131P, N179S, and G230R) bearing missense mutations found in patients affected by nonspherocytic hemolytic anemia. P5'N-1 is a relatively stable protein and has essentially identical catalytic efficiency toward cytidine monophosphate (CMP) and uridine monophosphate (UMP). All investigated mutant proteins display impaired catalytic properties and/or reduced thermostability, providing a rationale for the pathological effects of the mutations. Despite the substantial changes in the kinetic and thermostability parameters, the enzyme activity detected in the red blood cells of patients homozygous for mutations L131P and G230R exhibits moderate alterations. This suggests that P5'N-1 deficiency is compensated, possibly by other nucleotidases or alternative pathways in nucleotide metabolism. Therefore, nucleotidase activity may not be considered a prognostic indicator in patients affected by the enzymopathy.

Functional analysis of pyrimidine 5'-nucleotidase mutants causing nonspherocytic hemolytic anemia

CHIARELLI, LAURENT;GALIZZI, ALESSANDRO;IADAROLA, PAOLO;MATTEVI, ANDREA;VALENTINI, GIOVANNA
2005-01-01

Abstract

Inherited pyrimidine 5'-nucleotidase type I (P5'N-1) deficiency is the third most common erythrocyte enzymopathy that causes hemolysis. Fourteen different mutations have been identified to date. We have investigated the molecular bases of the disease by studying the biochemical properties of the recombinant wild-type human enzyme and 4 variant proteins (D87V, L131P, N179S, and G230R) bearing missense mutations found in patients affected by nonspherocytic hemolytic anemia. P5'N-1 is a relatively stable protein and has essentially identical catalytic efficiency toward cytidine monophosphate (CMP) and uridine monophosphate (UMP). All investigated mutant proteins display impaired catalytic properties and/or reduced thermostability, providing a rationale for the pathological effects of the mutations. Despite the substantial changes in the kinetic and thermostability parameters, the enzyme activity detected in the red blood cells of patients homozygous for mutations L131P and G230R exhibits moderate alterations. This suggests that P5'N-1 deficiency is compensated, possibly by other nucleotidases or alternative pathways in nucleotide metabolism. Therefore, nucleotidase activity may not be considered a prognostic indicator in patients affected by the enzymopathy.
2005
Biochemistry & Biophysics focuses on the structure and chemistry of biomolecules and covers all aspects of basic biochemistry/biophysics, including molecular structure, enzyme kinetics and protein-protein interaction; this category also contains cross-disciplinary resources focused on a specific class of biological molecules, e.g., nucleic acids, steroids, magnesium, growth factors, free radicals, bio-membranes, and peptides. Excluded are resources dealing with the application of biochemical techniques to specific topics listed elsewhere in CC/LS. Resources with a strong emphasis on the integration of biochemical pathways (such as signal transduction or molecular motors) at the cellular level are placed in the Cell & Developmental Biology category.
Sì, ma tipo non specificato
Inglese
Internazionale
STAMPA
105
8
3340
3345
6
Pyrimidine 5'-nucleotidase; hereditary hemolytic anemia; recombinant mutants
http://bloodjournal.hematologylibrary.org/cgi/content/abstract/105/8/3340
8
info:eu-repo/semantics/article
262
Chiarelli, Laurent; Bianchi, P.; Fermo, E.; Galizzi, Alessandro; Iadarola, Paolo; Mattevi, Andrea; Zanella, A.; Valentini, Giovanna
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/132978
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact