Monoamine oxidase B (MAO-B) is an outer mitochondrial membrane-bound flavoenzyme that is a well-known target for antidepressant and neuroprotective drugs. The 3A resolution structure of recombinant human MAO-B originally determined was of the enzyme complexed with pargyline, an irreversible inhibitor covalently bound to the N5 atom of the flavin coenzyme. The crystal structure shows that the enzyme is dimeric. Each monomer binds to the membrane via a C-terminal transmembrane helix and by apolar loops located at various positions in the sequence. Substrate binding to the enzyme involves negotiating a loop covering a 290A3 entrance apolar cavity before reaching an apolar 420A3 substrate cavity where the flavin coenzyme is located. The 1.7A isatin-MAO-B structure allowed a detailed examination of the enzyme's active site. A novel specific reversible MAO-B inhibitor, which is found as a contaminant in polystyrene plastics (1,4-diphenyl-2-butene), binds in both the entrance and the substrate cavity. Analogous MAO-B-specific inhibitors that bind in a manner traversing both cavities include trans-trans farnesol and chlorostyrylcaffeine. The rotation of the Ile199 side chain to an "open" conformation plays an essential role in this specificity. These results form a molecular basis for the design of new human MAO-B-specific reversible inhibitors.

Structure of the human mitochondrial monoamine oxidase B: New chemical implications for neuroprotectant drug design

BINDA, CLAUDIA;MATTEVI, ANDREA
2006-01-01

Abstract

Monoamine oxidase B (MAO-B) is an outer mitochondrial membrane-bound flavoenzyme that is a well-known target for antidepressant and neuroprotective drugs. The 3A resolution structure of recombinant human MAO-B originally determined was of the enzyme complexed with pargyline, an irreversible inhibitor covalently bound to the N5 atom of the flavin coenzyme. The crystal structure shows that the enzyme is dimeric. Each monomer binds to the membrane via a C-terminal transmembrane helix and by apolar loops located at various positions in the sequence. Substrate binding to the enzyme involves negotiating a loop covering a 290A3 entrance apolar cavity before reaching an apolar 420A3 substrate cavity where the flavin coenzyme is located. The 1.7A isatin-MAO-B structure allowed a detailed examination of the enzyme's active site. A novel specific reversible MAO-B inhibitor, which is found as a contaminant in polystyrene plastics (1,4-diphenyl-2-butene), binds in both the entrance and the substrate cavity. Analogous MAO-B-specific inhibitors that bind in a manner traversing both cavities include trans-trans farnesol and chlorostyrylcaffeine. The rotation of the Ile199 side chain to an "open" conformation plays an essential role in this specificity. These results form a molecular basis for the design of new human MAO-B-specific reversible inhibitors.
2006
Biochemistry & Biophysics focuses on the structure and chemistry of biomolecules and covers all aspects of basic biochemistry/biophysics, including molecular structure, enzyme kinetics and protein-protein interaction; this category also contains cross-disciplinary resources focused on a specific class of biological molecules, e.g., nucleic acids, steroids, magnesium, growth factors, free radicals, bio-membranes, and peptides. Excluded are resources dealing with the application of biochemical techniques to specific topics listed elsewhere in CC/LS. Resources with a strong emphasis on the integration of biochemical pathways (such as signal transduction or molecular motors) at the cellular level are placed in the Cell & Developmental Biology category.
Sì, ma tipo non specificato
Inglese
Internazionale
STAMPA
67
S5
S7
Tematica Ex SIR: Le monoammina ossidasi A e B: bersagli per il trattamento di disturbi neurologici. (Classif. Ex SIR:Articoli su riviste ISI )
neurology; Parkinson; oxidative stress
http://neurology.org/cgi/content/abstract/67/7_suppl_2/S5
6
info:eu-repo/semantics/article
262
Binda, Claudia; Hubálek, F; Li, M; Castagnoli, N; Edmondson, De; Mattevi, Andrea
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/133069
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact