In the coming years, water stress is destined to worsen considering that the consumption of water is expected to increase significantly, and climate change is expected to become more evident. Greywater (GW) has been studied as an alternative water source in arid and semiarid zones. Although there is no single optimal solution in order to treat GW, constructed wetlands proved to be effective. In this paper, the results of the treatment of a real GW by a horizontal flow constructed wetland (HFCW) for more than four months are shown. In the preliminary laboratory-scale plant, Phragmites australis, Carex oshimensis and Cyperus papyrus were tested separately and showed very similar results. In the second phase, pilot-scale tests were conducted to confirm the performance at a larger scale and evaluate the influence of hydraulic retention time, obtaining very high removal yields on turbidity (>92%), total suspended solids (TSS) (>85%), chemical oxygen demand (COD) (>89%), and five-day biological oxygen demand (BOD5) (>88%). Based on the results of the pilot-scale HFCW, a comparison with international recommendations by World Health Organization and European Union is discussed.

Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case

Collivignarelli M. C.;Carnevale Miino M.;Torretta V.;Sorlini S.
2020

Abstract

In the coming years, water stress is destined to worsen considering that the consumption of water is expected to increase significantly, and climate change is expected to become more evident. Greywater (GW) has been studied as an alternative water source in arid and semiarid zones. Although there is no single optimal solution in order to treat GW, constructed wetlands proved to be effective. In this paper, the results of the treatment of a real GW by a horizontal flow constructed wetland (HFCW) for more than four months are shown. In the preliminary laboratory-scale plant, Phragmites australis, Carex oshimensis and Cyperus papyrus were tested separately and showed very similar results. In the second phase, pilot-scale tests were conducted to confirm the performance at a larger scale and evaluate the influence of hydraulic retention time, obtaining very high removal yields on turbidity (>92%), total suspended solids (TSS) (>85%), chemical oxygen demand (COD) (>89%), and five-day biological oxygen demand (BOD5) (>88%). Based on the results of the pilot-scale HFCW, a comparison with international recommendations by World Health Organization and European Union is discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1332526
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact