The Q-cycle mechanism entering the electron and proton transport chain in oxygenic photosynthesis is an example of how biological processes can be efficiently investigated with elementary microscopic models. Here we address the problem of energy transport across the cellular membrane from an open quantum system theoretical perspective. We model the cytochrome b6f protein complex under cyclic electron flow conditions starting from a simplified kinetic model, which is hereby revisited in terms of a Markovian quantum master equation formulation and spin-boson Hamiltonian treatment. We apply this model to theoretically demonstrate an optimal thermodynamic efficiency of the Q-cycle around ambient and physiologically relevant temperature conditions. Furthermore, we determine the quantum yield of this complex biochemical process after setting the electrochemical potentials to values well established in the literature. The present work suggests that the theory of quantum open systems can successfully push forward our theoretical understanding of complex biological systems working close to the quantum/classical boundary.

Optimal efficiency of the Q-cycle mechanism around physiological temperatures from an open quantum systems approach

Tacchino F.;Gerace D.
2019-01-01

Abstract

The Q-cycle mechanism entering the electron and proton transport chain in oxygenic photosynthesis is an example of how biological processes can be efficiently investigated with elementary microscopic models. Here we address the problem of energy transport across the cellular membrane from an open quantum system theoretical perspective. We model the cytochrome b6f protein complex under cyclic electron flow conditions starting from a simplified kinetic model, which is hereby revisited in terms of a Markovian quantum master equation formulation and spin-boson Hamiltonian treatment. We apply this model to theoretically demonstrate an optimal thermodynamic efficiency of the Q-cycle around ambient and physiologically relevant temperature conditions. Furthermore, we determine the quantum yield of this complex biochemical process after setting the electrochemical potentials to values well established in the literature. The present work suggests that the theory of quantum open systems can successfully push forward our theoretical understanding of complex biological systems working close to the quantum/classical boundary.
2019
The Physics category includes resources of a broad, general nature that contain materials from all areas of physics, The category also includes resources specifically concerned with the following physics sub-fields: mathematical physics, particle and nuclear physics, physics of fluids and plasmas, quantum physics, and theoretical physics.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
9
1
16657
13
https://www.nature.com/articles/s41598-019-52842-x
4
info:eu-repo/semantics/article
262
Tacchino, F.; Succurro, A.; Ebenhoh, O.; Gerace, D.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1332750
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact