We study disorder-induced propagation losses of guided modes in photonic crystal slabs with line-defects. These losses are treated within a theoretical model of size disorder for the etched holes in the otherwise periodic photonic lattice. Comparisons are provided with state-of-the-art experimental data, both in membrane and Silicon-on-Insulator ( SOI) structures, in which propagation losses are mainly attributed to fabrication imperfections. The dependence of the losses on the photon group velocity and the useful bandwidth for low-loss propagation are analyzed and discussed for membrane and asymmetric as well as symmetric SOI systems. New designs for further improving device performances are proposed, which employ waveguides with varying channel widths. It is shown that losses in photonic crystal waveguides could be reduced by almost an order of magnitude with respect to latest experimental results. Propagation losses lower than 0.1 dB/mm are predicted for suitably designed structures, by assuming state-of-the-art fabrication accuracy.

Low-loss guided modes in photonic crystal waveguides

GERACE, DARIO;ANDREANI, LUCIO
2005-01-01

Abstract

We study disorder-induced propagation losses of guided modes in photonic crystal slabs with line-defects. These losses are treated within a theoretical model of size disorder for the etched holes in the otherwise periodic photonic lattice. Comparisons are provided with state-of-the-art experimental data, both in membrane and Silicon-on-Insulator ( SOI) structures, in which propagation losses are mainly attributed to fabrication imperfections. The dependence of the losses on the photon group velocity and the useful bandwidth for low-loss propagation are analyzed and discussed for membrane and asymmetric as well as symmetric SOI systems. New designs for further improving device performances are proposed, which employ waveguides with varying channel widths. It is shown that losses in photonic crystal waveguides could be reduced by almost an order of magnitude with respect to latest experimental results. Propagation losses lower than 0.1 dB/mm are predicted for suitably designed structures, by assuming state-of-the-art fabrication accuracy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/133569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact