Recent studies have shown that an automated, lifespan-inclusive, transdiagnostic, and clinically based, individualized risk calculator provides a powerful system for supporting the early detection of individuals at-risk of psychosis at a large scale, by leveraging electronic health records (EHRs). This risk calculator has been externally validated twice and is undergoing feasibility testing for clinical implementation. Integration of this risk calculator in clinical routine should be facilitated by prospective feasibility studies, which are required to address pragmatic challenges, such as missing data, and the usability of this risk calculator in a real-world and routine clinical setting. Here, we present an approach for a prospective implementation of a real-time psychosis risk detection and alerting service in a real-world EHR system. This method leverages the CogStack platform, which is an open-source, lightweight, and distributed information retrieval and text extraction system. The CogStack platform incorporates a set of services that allow for full-text search of clinical data, lifespan-inclusive, real-time calculation of psychosis risk, early risk-alerting to clinicians, and the visual monitoring of patients over time. Our method includes: 1) ingestion and synchronization of data from multiple sources into the CogStack platform, 2) implementation of a risk calculator, whose algorithm was previously developed and validated, for timely computation of a patient's risk of psychosis, 3) creation of interactive visualizations and dashboards to monitor patients' health status over time, and 4) building automated alerting systems to ensure that clinicians are notified of patients at-risk, so that appropriate actions can be pursued. This is the first ever study that has developed and implemented a similar detection and alerting system in clinical routine for early detection of psychosis.

Implementation of a Real-Time Psychosis Risk Detection and Alerting System Based on Electronic Health Records using CogStack

Spada, Giulia;Fusar-Poli, Paolo
2020-01-01

Abstract

Recent studies have shown that an automated, lifespan-inclusive, transdiagnostic, and clinically based, individualized risk calculator provides a powerful system for supporting the early detection of individuals at-risk of psychosis at a large scale, by leveraging electronic health records (EHRs). This risk calculator has been externally validated twice and is undergoing feasibility testing for clinical implementation. Integration of this risk calculator in clinical routine should be facilitated by prospective feasibility studies, which are required to address pragmatic challenges, such as missing data, and the usability of this risk calculator in a real-world and routine clinical setting. Here, we present an approach for a prospective implementation of a real-time psychosis risk detection and alerting service in a real-world EHR system. This method leverages the CogStack platform, which is an open-source, lightweight, and distributed information retrieval and text extraction system. The CogStack platform incorporates a set of services that allow for full-text search of clinical data, lifespan-inclusive, real-time calculation of psychosis risk, early risk-alerting to clinicians, and the visual monitoring of patients over time. Our method includes: 1) ingestion and synchronization of data from multiple sources into the CogStack platform, 2) implementation of a risk calculator, whose algorithm was previously developed and validated, for timely computation of a patient's risk of psychosis, 3) creation of interactive visualizations and dashboards to monitor patients' health status over time, and 4) building automated alerting systems to ensure that clinicians are notified of patients at-risk, so that appropriate actions can be pursued. This is the first ever study that has developed and implemented a similar detection and alerting system in clinical routine for early detection of psychosis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1341075
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact