This paper is devoted to the mathematical analysis of a thermodynamic model describing phase transitions with thermal memory in terms of an entropy equation and a momentum balance for the microforces. The initial and boundary value problem is addressed for the related integro-differential system of partial differential equations (PDEs). Existence and uniqueness, continuous dependence on the data, and regularity results are proved for the global solution, in a finite time interval.

Global solution to a singular integro-differential system related to the entropy balance

BONETTI, ELENA;COLLI, PIERLUIGI;GILARDI, GIANNI MARIA
2007-01-01

Abstract

This paper is devoted to the mathematical analysis of a thermodynamic model describing phase transitions with thermal memory in terms of an entropy equation and a momentum balance for the microforces. The initial and boundary value problem is addressed for the related integro-differential system of partial differential equations (PDEs). Existence and uniqueness, continuous dependence on the data, and regularity results are proved for the global solution, in a finite time interval.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/134471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact