This paper presents the design and implementation of a fully differential optical receiver, which is aimed for short reach intensity modulation and direct detection (IMDD) transceiver links. A Si-Ge balanced photodetector (PD) has been co-designed and packaged with a novel differential transimpedance amplifier (TIA). The TIA design is realized with a standard 28 nm CMOS process and operates with a standard digital supply (1V). Without using any equalization or DSP techniques, the proposed receiver can operate up to 54 Gb/s with a BER less than the KP4 limit (2.2×10−4) under an optical modulation amplitude (OMA) of -8.6 dBm, while the power efficiency has been optimized to 0.55 pJ/bit (0.98 pJ/bit if output buffer is included).
Co-design of a differential transimpedance amplifier and balanced photodetector for a sub-pJ/bit silicon photonics receiver
Lacava C.;
2020-01-01
Abstract
This paper presents the design and implementation of a fully differential optical receiver, which is aimed for short reach intensity modulation and direct detection (IMDD) transceiver links. A Si-Ge balanced photodetector (PD) has been co-designed and packaged with a novel differential transimpedance amplifier (TIA). The TIA design is realized with a standard 28 nm CMOS process and operates with a standard digital supply (1V). Without using any equalization or DSP techniques, the proposed receiver can operate up to 54 Gb/s with a BER less than the KP4 limit (2.2×10−4) under an optical modulation amplitude (OMA) of -8.6 dBm, while the power efficiency has been optimized to 0.55 pJ/bit (0.98 pJ/bit if output buffer is included).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.