We consider infinite dimensional Kolmogorov equations in a separable Hilbert space $H$ having singular first order terms. We prove an optimal regularity result for solutions to such equations. This result allows to study semilinear SPDEs of the form $ dX_t = A X_t dt + (-A)^{gamma}F(X_t)dt + dW_t $ driven by a cylindrical Wiener process $W = (W_t)$; here $A$ is a suitable self-adjoint operator on $H$.

An optimal regularity result for Kolmogorov equations and weak uniqueness for some critical SPDEs

Enrico Priola
2021-01-01

Abstract

We consider infinite dimensional Kolmogorov equations in a separable Hilbert space $H$ having singular first order terms. We prove an optimal regularity result for solutions to such equations. This result allows to study semilinear SPDEs of the form $ dX_t = A X_t dt + (-A)^{gamma}F(X_t)dt + dW_t $ driven by a cylindrical Wiener process $W = (W_t)$; here $A$ is a suitable self-adjoint operator on $H$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1347415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact