Both preclinical and clinical evidence supports the involvement of the endocannabinoid system in the pathobiology of cerebral ischemia. Selective cannabinoid-2 (CB2) receptor agonists exert significant neuroprotection in animal models of focal brain ischemia through a robust anti-inflammatory effect, involving both resident and peripheral immune cells. Nevertheless, no definitive studies demonstrating the relevance of CB2 receptors in human stroke exist. Using rtPCR and flow cytometry assays, we investigated CB2 receptor expression in circulating monocytes from 26 acute ischemic stroke patients and 16 age-matched healthy controls (CT). We also evaluated miR-665 expression, as potential CB2 receptor regulator. The median mRNA levels of CB2 were significantly (p < 0.0001) increased in total monocytes 24 h and 48 h after stroke as compared with CT. This was paralleled by elevation of miR-665 levels in monocytes collected from patients 24 h (p < 0.05 vs CT) and 48 h (p < 0.05 vs CT and p < 0.0001 vs 24 h) after ischemic stroke. Furthermore, an increased percentage of CB2+/CD16+ events, but not CB2+/CD14+ events, was found 24 h [20.17% (IQR, 17.22–23.58)] and 48 h [18.61% (IQR, 15.44–22.06)] after ischemic stroke when compared with CT [10.96% (IQR, 9.185–13.32)]. The percentage of CB2+/CD16+ events in monocytes was positively correlated with NIHSS score at entrance (r = 0.4327, p = 0.027). The potential beneficial functions of CD16+ intermediate and nonclassical monocytes in stroke and the elevated expression of CB2 receptor in these subsets strongly suggest that CB2 receptor agonists can be exploited for the treatment of ischemic stroke patients.
Characterization of CB2 Receptor Expression in Peripheral Blood Monocytes of Acute Ischemic Stroke Patients
Zanaboni A.;Persico A.;Tassorelli C.
2020-01-01
Abstract
Both preclinical and clinical evidence supports the involvement of the endocannabinoid system in the pathobiology of cerebral ischemia. Selective cannabinoid-2 (CB2) receptor agonists exert significant neuroprotection in animal models of focal brain ischemia through a robust anti-inflammatory effect, involving both resident and peripheral immune cells. Nevertheless, no definitive studies demonstrating the relevance of CB2 receptors in human stroke exist. Using rtPCR and flow cytometry assays, we investigated CB2 receptor expression in circulating monocytes from 26 acute ischemic stroke patients and 16 age-matched healthy controls (CT). We also evaluated miR-665 expression, as potential CB2 receptor regulator. The median mRNA levels of CB2 were significantly (p < 0.0001) increased in total monocytes 24 h and 48 h after stroke as compared with CT. This was paralleled by elevation of miR-665 levels in monocytes collected from patients 24 h (p < 0.05 vs CT) and 48 h (p < 0.05 vs CT and p < 0.0001 vs 24 h) after ischemic stroke. Furthermore, an increased percentage of CB2+/CD16+ events, but not CB2+/CD14+ events, was found 24 h [20.17% (IQR, 17.22–23.58)] and 48 h [18.61% (IQR, 15.44–22.06)] after ischemic stroke when compared with CT [10.96% (IQR, 9.185–13.32)]. The percentage of CB2+/CD16+ events in monocytes was positively correlated with NIHSS score at entrance (r = 0.4327, p = 0.027). The potential beneficial functions of CD16+ intermediate and nonclassical monocytes in stroke and the elevated expression of CB2 receptor in these subsets strongly suggest that CB2 receptor agonists can be exploited for the treatment of ischemic stroke patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.