Historically, photonic crystals have been made of inorganic high refractive index materials coupled to air voids to maximize the dielectric contrast and in turn the light confinement. However, these systems are complex, costly, and time-demanding, and the fabrication processes are difficult to scale. Polymer structures promise to tackle this issue thanks to their easy solution and melt processing. Unfortunately, their low dielectric contrast limits their performance. In this work, we propose a concise but exhaustive review of the common polymers employed in the fabrication of planar 1D photonic crystals and new approaches to the enhancement of their dielectric contrast. Transfer matrix method modeling will be employed to quantify the effect of this parameter in standardized structures and to propose a new polymer structure for applications dealing with light management.

Strategies for dielectric contrast enhancement in 1D planar polymeric photonic crystals

Patrini M.;
2020-01-01

Abstract

Historically, photonic crystals have been made of inorganic high refractive index materials coupled to air voids to maximize the dielectric contrast and in turn the light confinement. However, these systems are complex, costly, and time-demanding, and the fabrication processes are difficult to scale. Polymer structures promise to tackle this issue thanks to their easy solution and melt processing. Unfortunately, their low dielectric contrast limits their performance. In this work, we propose a concise but exhaustive review of the common polymers employed in the fabrication of planar 1D photonic crystals and new approaches to the enhancement of their dielectric contrast. Transfer matrix method modeling will be employed to quantify the effect of this parameter in standardized structures and to propose a new polymer structure for applications dealing with light management.
2020
Applied Physics/Condensed Matter/Materials Science encompasses the resources of three related disciplines: Applied Physics, Condensed Matter Physics, and Materials Science. The applied physics resources are concerned with the applications of topics in condensed matter as well as optics, vacuum science, lasers, electronics, cryogenics, magnets and magnetism, acoustical physics and mechanics. The condensed matter physics resources are concerned with the study of the structure and the thermal, mechanical, electrical, magnetic and optical properties of condensed matter. They include superconductivity, surfaces, interfaces, thin films, dielectrics, ferroelectrics and semiconductors. The materials science resources are concerned with the physics and chemistry of materials and include ceramics, composites, alloys, metals and metallurgy, nanotechnology, nuclear materials, adhesion and adhesives. Resources dealing with polymeric materials are listed in the Organic Chemistry/Polymer Science category.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
10
12
4122
22
Dielectric contrast; Light management; Polymer photonic crystal
https://www.mdpi.com/2076-3417/10/12/4122
6
info:eu-repo/semantics/article
262
Lova, P.; Megahd, H.; Stagnaro, P.; Alloisio, M.; Patrini, M.; Comoretto, D.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1350573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact