Acetylcholine (ACh) exerts a crucial role in learning and memory. The striatum contains the highest concentration of this transmitter in the brain. This structure expresses two different forms of synaptic plasticity, long-term depression (LTD) and long-term potentiation (LTP), which might contribute to the storage of motor skills and some cognitive processes. We have investigated the role of M2-like muscarinic receptors in striatal LTP by utilizing intracellular recordings in vitro from a rat corticostriatal slice preparation. Methoctramine (250 nM), an antagonist of M2-like muscarinic receptors, enhanced striatal LTP induced in the absence of external magnesium (Mg2+) by high-frequency stimulation (HFS) of corticostriatal fibres. Methoctramine did not affect the amplitude of excitatory postsynaptic potentials (EPSPs) when bath applied either before or after the conditioning tetanus suggesting that a critical increase of ACh concentrations is produced only during HFS. Methoctramine per se failed to enhance the NMDA-mediated EPSPs recorded in the absence of external Mg2+ and in the presence of 10 microM CNQX. Methoctramine antagonized the presynaptic inhibitory action of neostigmine, an inhibitor of ACh-esterase, and oxotremorine, an agonist of M2-like muscarinic receptors. These data indicate that the activation of M2-like muscarinic receptors exerts a negative influence on striatal LTP, probably by reducing the release of glutamate from corticostriatal fibres and they suggest a complex modulatory effect of ACh in striatal synaptic plasticity.

Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses

PISANI, ANTONIO;
1998

Abstract

Acetylcholine (ACh) exerts a crucial role in learning and memory. The striatum contains the highest concentration of this transmitter in the brain. This structure expresses two different forms of synaptic plasticity, long-term depression (LTD) and long-term potentiation (LTP), which might contribute to the storage of motor skills and some cognitive processes. We have investigated the role of M2-like muscarinic receptors in striatal LTP by utilizing intracellular recordings in vitro from a rat corticostriatal slice preparation. Methoctramine (250 nM), an antagonist of M2-like muscarinic receptors, enhanced striatal LTP induced in the absence of external magnesium (Mg2+) by high-frequency stimulation (HFS) of corticostriatal fibres. Methoctramine did not affect the amplitude of excitatory postsynaptic potentials (EPSPs) when bath applied either before or after the conditioning tetanus suggesting that a critical increase of ACh concentrations is produced only during HFS. Methoctramine per se failed to enhance the NMDA-mediated EPSPs recorded in the absence of external Mg2+ and in the presence of 10 microM CNQX. Methoctramine antagonized the presynaptic inhibitory action of neostigmine, an inhibitor of ACh-esterase, and oxotremorine, an agonist of M2-like muscarinic receptors. These data indicate that the activation of M2-like muscarinic receptors exerts a negative influence on striatal LTP, probably by reducing the release of glutamate from corticostriatal fibres and they suggest a complex modulatory effect of ACh in striatal synaptic plasticity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11571/1355659
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 81
social impact