Neurotrophin-4 (NT-4) is produced by slow muscle fibers in an activity-dependent manner and promotes growth and remodeling of adult motorneuron innervation. However, both muscle fibers and motor neurons express NT-4 receptors, suggesting bidirectional NT-4 signaling at the neuromuscular junction. Mice lacking NT-4 displayed enlarged and fragmented neuromuscular junctions with disassembled postsynaptic acetylcholine receptor (AChR) clusters, reduced AChR binding, and acetylcholinesterase activity. Electromyographic responses, posttetanic potentiation, and action potential amplitude were also significantly reduced in muscle fibers from NT-4 knock-out mice. Slow-twitch soleus muscles from these mice fatigued twice as rapidly as those from wild-type mice during repeated tetanic stimulation. Thus, muscle-derived NT-4 is required for maintenance of postsynaptic AChR regions, normal muscular electrophysiological responses, and resistance to muscle fatigue. This neurotrophin may therefore be a key component of an activity-dependent feedback mechanism regulating maintenance of neuromuscular connections and muscular performance

Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4

PASTORIS, ORNELLA;
2001-01-01

Abstract

Neurotrophin-4 (NT-4) is produced by slow muscle fibers in an activity-dependent manner and promotes growth and remodeling of adult motorneuron innervation. However, both muscle fibers and motor neurons express NT-4 receptors, suggesting bidirectional NT-4 signaling at the neuromuscular junction. Mice lacking NT-4 displayed enlarged and fragmented neuromuscular junctions with disassembled postsynaptic acetylcholine receptor (AChR) clusters, reduced AChR binding, and acetylcholinesterase activity. Electromyographic responses, posttetanic potentiation, and action potential amplitude were also significantly reduced in muscle fibers from NT-4 knock-out mice. Slow-twitch soleus muscles from these mice fatigued twice as rapidly as those from wild-type mice during repeated tetanic stimulation. Thus, muscle-derived NT-4 is required for maintenance of postsynaptic AChR regions, normal muscular electrophysiological responses, and resistance to muscle fatigue. This neurotrophin may therefore be a key component of an activity-dependent feedback mechanism regulating maintenance of neuromuscular connections and muscular performance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/135573
Citazioni
  • ???jsp.display-item.citation.pmc??? 41
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 88
social impact