BACKGROUND: ΔFosB is a surrogate marker of L-dopa-induced dyskinesia (LID), the unavoidable disabling consequence of Parkinson's disease L-dopa long-term treatment. However, the relationship between the electrical activity of FosB/ΔFosB-expressing neurons and LID manifestation is unknown. METHODS: We used the Daun02 prodrug-inactivation method associated with lentiviral expression of ß-galactosidase under the control of the FosB promoter to investigate a causal link between the activity of FosB/ΔFosB-expressing neurons and dyskinesia severity in both rat and monkey models of Parkinson's disease and LID. Whole-cell recordings of medium spiny neurons (MSNs) were performed to assess the effects of Daun02 and daunorubicin on neuronal excitability. RESULTS: We first show that daunorubicin, the active product of Daun02 metabolism by ß-galactosidase, decreases the activity of MSNs in rat brain slices and that Daun02 strongly decreases the excitability of rat MSN primary cultures expressing ß-galactosidase upon D1 dopamine receptor stimulation. We then demonstrate that the selective, and reversible, inhibition of FosB/ΔFosB-expressing striatal neurons with Daun02 decreases the severity of LID while improving the beneficial effect of L-dopa. CONCLUSIONS: These results establish that FosB/ΔFosB accumulation ultimately results in altered neuronal electrical properties sustaining maladaptive circuits leading not only to LID but also to a blunted response to L-dopa. These findings further reveal that targeting dyskinesia can be achieved without reducing the antiparkinsonian properties of L-dopa when specifically inhibiting FosB/ΔFosB-accumulating neurons.

Selective Inactivation of Striatal FosB/ΔFosB-Expressing Neurons Alleviates L-Dopa-Induced Dyskinesia

Pisani A;
2014-01-01

Abstract

BACKGROUND: ΔFosB is a surrogate marker of L-dopa-induced dyskinesia (LID), the unavoidable disabling consequence of Parkinson's disease L-dopa long-term treatment. However, the relationship between the electrical activity of FosB/ΔFosB-expressing neurons and LID manifestation is unknown. METHODS: We used the Daun02 prodrug-inactivation method associated with lentiviral expression of ß-galactosidase under the control of the FosB promoter to investigate a causal link between the activity of FosB/ΔFosB-expressing neurons and dyskinesia severity in both rat and monkey models of Parkinson's disease and LID. Whole-cell recordings of medium spiny neurons (MSNs) were performed to assess the effects of Daun02 and daunorubicin on neuronal excitability. RESULTS: We first show that daunorubicin, the active product of Daun02 metabolism by ß-galactosidase, decreases the activity of MSNs in rat brain slices and that Daun02 strongly decreases the excitability of rat MSN primary cultures expressing ß-galactosidase upon D1 dopamine receptor stimulation. We then demonstrate that the selective, and reversible, inhibition of FosB/ΔFosB-expressing striatal neurons with Daun02 decreases the severity of LID while improving the beneficial effect of L-dopa. CONCLUSIONS: These results establish that FosB/ΔFosB accumulation ultimately results in altered neuronal electrical properties sustaining maladaptive circuits leading not only to LID but also to a blunted response to L-dopa. These findings further reveal that targeting dyskinesia can be achieved without reducing the antiparkinsonian properties of L-dopa when specifically inhibiting FosB/ΔFosB-accumulating neurons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1356055
Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 56
social impact