We discuss the solution of eigenvalue problems associated with partial differential equations that can be written in the generalized form Ax= λBx, where the matrices A and/or B may depend on a scalar parameter. Parameter dependent matrices occur frequently when stabilized formulations are used for the numerical approximation of partial differential equations. With the help of classical numerical examples we show that the presence of one (or both) parameters can produce unexpected results.

Approximation of PDE eigenvalue problems involving parameter dependent matrices

Boffi D.;Gardini F.
;
2020-01-01

Abstract

We discuss the solution of eigenvalue problems associated with partial differential equations that can be written in the generalized form Ax= λBx, where the matrices A and/or B may depend on a scalar parameter. Parameter dependent matrices occur frequently when stabilized formulations are used for the numerical approximation of partial differential equations. With the help of classical numerical examples we show that the presence of one (or both) parameters can produce unexpected results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1356294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact