GN11 and GT1-7 are immortalized gonadotropin-releasing hormone-positive murine cell lines exhibiting the features of immature olfactory neurons and differentiated hypothalamic neurons, respectively. Using electron microscopy and biochemical assays (RT-PCR and immunoblotting) we determined the presence of numerous caveolae invaginations and of caveolin-1 and -2 mRNAs and proteins in GN11 cells, and their absence in GT1-7 cells. The lack of caveolins in GT1-7 cells might be due to the silencing of gene transcription caused by estrogen receptor alpha whose inhibitory activity in GN11 cells could be counter-balanced by co-expression of caveolin-permissive estrogen receptor beta. To test whether the unique expression of caveolins in GN11 cells is related to their immature state, we treated GN11 cells for 24-72 h with retinoic acid or phorbol ester. Both treatments led to neuronal differentiation of GN11 cells, as shown by emission of long neuritic processes, increased expression of growth cone-associated protein-43 and appearance of voltage-gated K+ and C2+ channel currents. Concurrently, caveolins 1 and 2, and estrogen receptor beta were down-regulated in differentiated GN11, whereas estrogen receptor alpha was unaffected by differentiation. We conclude that caveolin expression in GN11 neurons is down-regulated upon differentiation and up-regulated by estrogen receptor beta.

Retinoic acid- and phorbol ester-induced neuronal differentiation down-regulates caveolin expression in GnRH neurons

GRAVATI, MARTA;BIELLA, GERARDO ROSARIO;TOSELLI, MAURO GIUSEPPE;
2008-01-01

Abstract

GN11 and GT1-7 are immortalized gonadotropin-releasing hormone-positive murine cell lines exhibiting the features of immature olfactory neurons and differentiated hypothalamic neurons, respectively. Using electron microscopy and biochemical assays (RT-PCR and immunoblotting) we determined the presence of numerous caveolae invaginations and of caveolin-1 and -2 mRNAs and proteins in GN11 cells, and their absence in GT1-7 cells. The lack of caveolins in GT1-7 cells might be due to the silencing of gene transcription caused by estrogen receptor alpha whose inhibitory activity in GN11 cells could be counter-balanced by co-expression of caveolin-permissive estrogen receptor beta. To test whether the unique expression of caveolins in GN11 cells is related to their immature state, we treated GN11 cells for 24-72 h with retinoic acid or phorbol ester. Both treatments led to neuronal differentiation of GN11 cells, as shown by emission of long neuritic processes, increased expression of growth cone-associated protein-43 and appearance of voltage-gated K+ and C2+ channel currents. Concurrently, caveolins 1 and 2, and estrogen receptor beta were down-regulated in differentiated GN11, whereas estrogen receptor alpha was unaffected by differentiation. We conclude that caveolin expression in GN11 neurons is down-regulated upon differentiation and up-regulated by estrogen receptor beta.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/135934
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact