We study a stochastic phase-field model for tumor growth dynamics coupling a stochastic Cahn-Hilliard equation for the tumor phase parameter with a stochastic reaction-diffusion equation governing the nutrient proportion. We prove strong well-posedness of the system in a general framework through monotonicity and stochastic compactness arguments. We introduce then suitable controls representing the concentration of cytotoxic drugs administered in medical treatment and we analyze a related optimal control problem. We derive existence of an optimal strategy and deduce first-order necessary optimality conditions by studying the corresponding linearized system and the backward adjoint system.
Optimal control of stochastic phase-field models related to tumor growth
Orrieri, Carlo;Rocca, Elisabetta;Scarpa, Luca
2020-01-01
Abstract
We study a stochastic phase-field model for tumor growth dynamics coupling a stochastic Cahn-Hilliard equation for the tumor phase parameter with a stochastic reaction-diffusion equation governing the nutrient proportion. We prove strong well-posedness of the system in a general framework through monotonicity and stochastic compactness arguments. We introduce then suitable controls representing the concentration of cytotoxic drugs administered in medical treatment and we analyze a related optimal control problem. We derive existence of an optimal strategy and deduce first-order necessary optimality conditions by studying the corresponding linearized system and the backward adjoint system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.