This paper is concerned with a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtin's two-scale approach. The main working assumptions are made on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. A suitable Ginzburg-Landau free energy is considered. Global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model is proved by deriving suitable a priori estimates and by showing weak sequential stability of families of approximating solutions. At last, some highlights are given regarding a possible approximation scheme compatible with the a-priori estimates available for the system.
On a non-isothermal Cahn-Hilliard model based on a microforce balance
Marveggio A.;Schimperna G.
2021-01-01
Abstract
This paper is concerned with a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtin's two-scale approach. The main working assumptions are made on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. A suitable Ginzburg-Landau free energy is considered. Global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model is proved by deriving suitable a priori estimates and by showing weak sequential stability of families of approximating solutions. At last, some highlights are given regarding a possible approximation scheme compatible with the a-priori estimates available for the system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.