In this article we deduce a mathematical model of Maxwell-Stefan type for a reactive mixture of polyatomic gases with a continuous structure of internal energy. The equations of the model are derived in the diffusive limit of a kinetic system of Boltzmann equations for the considered mixture, in the general non-isothermal setting. The asymptotic analysis of the kinetic system is performed under a reactive-diffusive scaling for which mechanical collisions are dominant with respect to chemical reactions. The resulting system couples the Maxwell-Stefan equations for the diffusive fluxes with the evolution equations for the number densities of the chemical species and the evolution equation for the temperature of the mixture. The production terms due to the chemical reaction and the Maxwell-Stefan diffusion coefficients are moreover obtained in terms of general collision kernels and parameters of the kinetic model.

On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting

Bisi M.;Salvarani F.;
2020-01-01

Abstract

In this article we deduce a mathematical model of Maxwell-Stefan type for a reactive mixture of polyatomic gases with a continuous structure of internal energy. The equations of the model are derived in the diffusive limit of a kinetic system of Boltzmann equations for the considered mixture, in the general non-isothermal setting. The asymptotic analysis of the kinetic system is performed under a reactive-diffusive scaling for which mechanical collisions are dominant with respect to chemical reactions. The resulting system couples the Maxwell-Stefan equations for the diffusive fluxes with the evolution equations for the number densities of the chemical species and the evolution equation for the temperature of the mixture. The production terms due to the chemical reaction and the Maxwell-Stefan diffusion coefficients are moreover obtained in terms of general collision kernels and parameters of the kinetic model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1366274
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact