The ability to estimate quantity, which is crucially important in several aspects of animal behaviour (e.g. foraging), has been extensively investigated in most taxa, with the exception of reptiles. The few studies available, in lizards, report lack of spontaneous discrimination of quantity, which may suggest that reptiles could represent an exception in numerical abilities among vertebrates. We investigated the spontaneous ability of Hermann's tortoises (Testudo hermanni) to select the larger quantity of food items. Tortoises were able to choose the larger food item when exposed to two options differing in size, but equal in numerousness (0.25, 0.50, 0.67 and 0.75 ratio) and when presented with two groups differing in numerousness, but equal in size (1 versus 4, 2 versus 4, 2 versus 3 and 3 versus 4 items). The tortoises succeeded in both size and numerousness discrimination, and their performance appeared to depend on the ratio of items to be discriminated (thus following Weber's Law). These findings in chelonians provide evidence of an ancient system for the extrapolation of numerical magnitudes from given sets of elements, shared among vertebrates.

Continuous and discrete quantity discrimination in tortoises

Gazzola A.;Pellitteri Rosa D.
2018-01-01

Abstract

The ability to estimate quantity, which is crucially important in several aspects of animal behaviour (e.g. foraging), has been extensively investigated in most taxa, with the exception of reptiles. The few studies available, in lizards, report lack of spontaneous discrimination of quantity, which may suggest that reptiles could represent an exception in numerical abilities among vertebrates. We investigated the spontaneous ability of Hermann's tortoises (Testudo hermanni) to select the larger quantity of food items. Tortoises were able to choose the larger food item when exposed to two options differing in size, but equal in numerousness (0.25, 0.50, 0.67 and 0.75 ratio) and when presented with two groups differing in numerousness, but equal in size (1 versus 4, 2 versus 4, 2 versus 3 and 3 versus 4 items). The tortoises succeeded in both size and numerousness discrimination, and their performance appeared to depend on the ratio of items to be discriminated (thus following Weber's Law). These findings in chelonians provide evidence of an ancient system for the extrapolation of numerical magnitudes from given sets of elements, shared among vertebrates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1367437
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 49
social impact