The attribution of 1H and 13C NMR signals of a library of 5-, 6- and 7-substituted 2,2-dimethylchroman-4-one derivatives is reported. Substituent effects were interpreted in terms of the Hammett equation, showing a good correlation for carbons para- to the substituent group, not for the meta- ones. Similarly, the Lynch correlation shows the additivity of the substituent chemical shifts in the case of both H and C nuclei, again with the exception of the carbons in the meta- position. Density Functional Theory (DFT)-predicted 1H and 13C chemical shifts correspond closely with experimentally observed values, with some exceptions for C NMR data; however, the correlation is valid only for the aromatic moiety and cannot be extended to the heterocyclic ring of the chroman-4-one scaffold.

Substituent Effects on NMR Spectroscopy of 2,2-Dimethylchroman-4-one Derivatives: Experimental and Theoretical Studies

Davide Ravelli
;
2020-01-01

Abstract

The attribution of 1H and 13C NMR signals of a library of 5-, 6- and 7-substituted 2,2-dimethylchroman-4-one derivatives is reported. Substituent effects were interpreted in terms of the Hammett equation, showing a good correlation for carbons para- to the substituent group, not for the meta- ones. Similarly, the Lynch correlation shows the additivity of the substituent chemical shifts in the case of both H and C nuclei, again with the exception of the carbons in the meta- position. Density Functional Theory (DFT)-predicted 1H and 13C chemical shifts correspond closely with experimentally observed values, with some exceptions for C NMR data; however, the correlation is valid only for the aromatic moiety and cannot be extended to the heterocyclic ring of the chroman-4-one scaffold.
2020
The Organic Chemistry/Polymer Science category includes resources concerned with the related fields of organic chemistry and polymer science. The organic chemistry resources deal with compounds of carbon with the exception of certain simple ones, such as the carbon oxides, carbonates, cyanides and cyanates (see Inorganic & Nuclear Chemistry). This category includes research on synthetic and natural organic compounds that may include other elements, such as hydrogen and oxygen, but also nitrogen, halogens, sulphur and phosphorous. Resources concerned with hydrocarbons, organic compounds containing only the elements carbon and hydrogen, are also included in this category. Examples are the alkanes, alkenes, alkynes and aromatics, such as benzene and naphthalene. Polymer science includes all resources dealing with the study, production and technology of polymers, which are compounds composed of very large molecules made up of repeating molecular units (monomers). Polymers may be natural substances, such as polysaccharides or proteins, or synthetic materials, such as nylon or polyethylene.
Esperti anonimi
Inglese
Internazionale
STAMPA
25
9
2061
https://www.mdpi.com/1420-3049/25/9/2061
4
info:eu-repo/semantics/article
262
Iguchi, Daniela; Ravelli, Davide; Erra-Balsells, Rosa; Bonesi, Sergio M.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1369794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact