Anthracyclines are archetypal representatives of the tetracyclic type II polyketide natural products that are widely used in cancer chemotherapy. Although the synthesis of this class of compounds has been a subject of several investigations, all known approaches are based on annulations, relying on the union of properly prefunctionalized building blocks. Herein, we describe a conceptually different approach using a polynuclear arene as a starting template, ideally requiring only functional decorations to reach the desired target molecule. Specifically, tetracene was converted to (±)-idarubicinone, the aglycone of the FDA approved anthracycline idarubicin, through the judicious orchestration of Co- and Ru-catalyzed arene oxidation and arenophile-mediated dearomative hydroboration. Such a global functionalization strategy, the combination of site-selective arene and dearomative functionalization, provided the key anthracycline framework in five operations and enabled rapid and controlled access to (±)-idarubicinone.

Synthesis of (±)-Idarubicinone via Global Functionalization of Tetracene

Sarlah D.
2019-01-01

Abstract

Anthracyclines are archetypal representatives of the tetracyclic type II polyketide natural products that are widely used in cancer chemotherapy. Although the synthesis of this class of compounds has been a subject of several investigations, all known approaches are based on annulations, relying on the union of properly prefunctionalized building blocks. Herein, we describe a conceptually different approach using a polynuclear arene as a starting template, ideally requiring only functional decorations to reach the desired target molecule. Specifically, tetracene was converted to (±)-idarubicinone, the aglycone of the FDA approved anthracycline idarubicin, through the judicious orchestration of Co- and Ru-catalyzed arene oxidation and arenophile-mediated dearomative hydroboration. Such a global functionalization strategy, the combination of site-selective arene and dearomative functionalization, provided the key anthracycline framework in five operations and enabled rapid and controlled access to (±)-idarubicinone.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1370020
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact