The catalytic properties of energy-utilizing ATPases enzyme systems related to ions homeostasis were evaluated in different types of synaptic plasma membranes (SPM) and in somatic plasma membranes (SM) from cerebral cortex of rats aged 5, 10, and 22 months. The following enzymes were evaluated: Na+, K+-ATPase, Ca2+, Mg2+-ATPase, Mg2+-ATPase and the activity of acetylcholine esterase (AChE) was also evaluated. The ATPases located on SM and SPM and synaptic vesicles are involved in the regulation of presynaptic nerve ending homeostasis and postsynaptic activities. Different types of SM and SPM (three types) were obtained by combinations of differential and density gradient ultracentrifugation techniques in sucrose-Ficoll media: the first was obtained by purification of the sediment of mitochondrial supernate and the second after synaptosomal lysis and purification on density gradient. In the cerebral cortex of 5-month-old rats, the catalytic properties of ATPases systems markedly differ according to the different types of SPM and SM, thus indicating that the metabolic role of each ATPase is determined by their subcellular in vivo localization. As regards ageing: (i) ATPase enzyme catalytic activities tend to decrease during ageing in a complex way; (ii) ageing induced specific modifications in individual ATPases according to their subsynaptic localization; and (iii) these effects are probably due to specific biochemical situations that take place at each age, reflecting the bioenergetic state of the cerebral tissue with respect to the energy demand. The cerebral concentration and content of SM proteins were increased by ageing suggesting that many defective noncatalytic proteins may be formed during ageing, as shown by immunoblotting techniques

ATPases enzyme activities during ageing in different types of somatic and synaptic plasma membranes from rat frontal cerebral cortex

GORINI, ANTONELLA;GEROLDI, DIEGO;VILLA, ROBERTO FEDERICO
2002-01-01

Abstract

The catalytic properties of energy-utilizing ATPases enzyme systems related to ions homeostasis were evaluated in different types of synaptic plasma membranes (SPM) and in somatic plasma membranes (SM) from cerebral cortex of rats aged 5, 10, and 22 months. The following enzymes were evaluated: Na+, K+-ATPase, Ca2+, Mg2+-ATPase, Mg2+-ATPase and the activity of acetylcholine esterase (AChE) was also evaluated. The ATPases located on SM and SPM and synaptic vesicles are involved in the regulation of presynaptic nerve ending homeostasis and postsynaptic activities. Different types of SM and SPM (three types) were obtained by combinations of differential and density gradient ultracentrifugation techniques in sucrose-Ficoll media: the first was obtained by purification of the sediment of mitochondrial supernate and the second after synaptosomal lysis and purification on density gradient. In the cerebral cortex of 5-month-old rats, the catalytic properties of ATPases systems markedly differ according to the different types of SPM and SM, thus indicating that the metabolic role of each ATPase is determined by their subcellular in vivo localization. As regards ageing: (i) ATPase enzyme catalytic activities tend to decrease during ageing in a complex way; (ii) ageing induced specific modifications in individual ATPases according to their subsynaptic localization; and (iii) these effects are probably due to specific biochemical situations that take place at each age, reflecting the bioenergetic state of the cerebral tissue with respect to the energy demand. The cerebral concentration and content of SM proteins were increased by ageing suggesting that many defective noncatalytic proteins may be formed during ageing, as shown by immunoblotting techniques
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/137058
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact