Nitric oxide seems to be involved in the altitude acclimatization process due to its ability to regulate pulmonary, cardiovascular and muscular responses to hypoxia. In this study, we investigated the plasma nitrate (NO3−) and nitrite (NO2−) response to hypobaric hypoxia in two groups of lowlanders exposed at different altitudes. For seven days, fourteen subjects were evaluated at Casati Hut (3269 m a.s.l. M.CEVEDALE) and eleven individuals were studied at Capanna Regina Margherita (4554 m a.s.l. M.ROSA). Before expeditions and at different time points during high-altitude sojourn, plasma NO3− and NO2− concentrations were measured by chemiluminescence. Resting peripheral arterial oxygen saturation (SpO2), heart rate (HR) and mean arterial blood pressure (MAP) were monitored during the experimental period. Possible confounding factors such as dietary NO3− intake, physical activity and altitude changes were controlled. Sea level plasma NO3− and NO2− concentrations significantly increased at altitude in both M.CEVEDALE group (+26.2 μM, p ≤ 0.0001, 95% CI [+17.6, +34.8] and +559.2 nM, p ≤ 0.0001, [+332.8, +785.6]) and M.ROSA group (+18.7 μM, p ≤ 0.0001, [+10.8, +26.5] and +463.7 nM, p ≤ 0.0001, [+314.3, +613.0]). Average peak value in NO metabolites concentration occurred earlier in M.CEVEDALE group vs M.ROSA group (NO3−, day 3 vs day 5, p = 0.007; NO2−, day 3 vs day 5, p = 0.019). In both groups, resting SpO2, HR and MAP values changed according to altitude levels. This study shows that exposure to hypobaric hypoxia affects nitric oxide metabolites, resulting in a significant increase in plasma NO3− and NO2− concentrations from sea level values. Interestingly, the higher the altitude reached, the longer the time taken to reach a peak in plasma concentrations of nitric oxide metabolites.
Beet on Alps: Time-course changes of plasma nitrate and nitrite concentrations during acclimatization to high-altitude
Porcelli S.;
2021-01-01
Abstract
Nitric oxide seems to be involved in the altitude acclimatization process due to its ability to regulate pulmonary, cardiovascular and muscular responses to hypoxia. In this study, we investigated the plasma nitrate (NO3−) and nitrite (NO2−) response to hypobaric hypoxia in two groups of lowlanders exposed at different altitudes. For seven days, fourteen subjects were evaluated at Casati Hut (3269 m a.s.l. M.CEVEDALE) and eleven individuals were studied at Capanna Regina Margherita (4554 m a.s.l. M.ROSA). Before expeditions and at different time points during high-altitude sojourn, plasma NO3− and NO2− concentrations were measured by chemiluminescence. Resting peripheral arterial oxygen saturation (SpO2), heart rate (HR) and mean arterial blood pressure (MAP) were monitored during the experimental period. Possible confounding factors such as dietary NO3− intake, physical activity and altitude changes were controlled. Sea level plasma NO3− and NO2− concentrations significantly increased at altitude in both M.CEVEDALE group (+26.2 μM, p ≤ 0.0001, 95% CI [+17.6, +34.8] and +559.2 nM, p ≤ 0.0001, [+332.8, +785.6]) and M.ROSA group (+18.7 μM, p ≤ 0.0001, [+10.8, +26.5] and +463.7 nM, p ≤ 0.0001, [+314.3, +613.0]). Average peak value in NO metabolites concentration occurred earlier in M.CEVEDALE group vs M.ROSA group (NO3−, day 3 vs day 5, p = 0.007; NO2−, day 3 vs day 5, p = 0.019). In both groups, resting SpO2, HR and MAP values changed according to altitude levels. This study shows that exposure to hypobaric hypoxia affects nitric oxide metabolites, resulting in a significant increase in plasma NO3− and NO2− concentrations from sea level values. Interestingly, the higher the altitude reached, the longer the time taken to reach a peak in plasma concentrations of nitric oxide metabolites.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.