During the last decade, many clinical and pathophysiological aspects of sleep-related epileptic and non-epileptic paroxysmal behaviors have been clarified. Advances have been achieved in part through the use of intracerebral recording methods such as stereo-electroencephalography (S-EEG), which has allowed a unique "in vivo" neurophysiological insight into focal epilepsy. Using S-EEG, the local features of physiological and pathological EEG activity in different cortical and subcortical structures have been better defined during the entire sleep-wake spectrum. For example, S-EEG has contributed to clarify the semiology of sleep-related seizures as well as highlight the specific epileptogenic networks involved during ictal activity. Moreover, intracerebral EEG recordings derived from patients with epilepsy have been valuable to study sleep physiology and specific sleep disorders. The occasional co-occurrence of NREM-related parasomnias in epileptic patients undergoing S-EEG investigation has permitted the recordings of such events, highlighting the presence of local electrophysiological dissociated states and clarifying the underlying pathophysiological substrate of such NREM sleep disorders. Based on these recent advances, the authors review and summarize the current and relevant S-EEG literature on sleep-related hypermotor epilepsies and NREM-related parasomnias. Finally, novel data and future research hypothesis will be discussed.

Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG

Terzaghi M.;
2016

Abstract

During the last decade, many clinical and pathophysiological aspects of sleep-related epileptic and non-epileptic paroxysmal behaviors have been clarified. Advances have been achieved in part through the use of intracerebral recording methods such as stereo-electroencephalography (S-EEG), which has allowed a unique "in vivo" neurophysiological insight into focal epilepsy. Using S-EEG, the local features of physiological and pathological EEG activity in different cortical and subcortical structures have been better defined during the entire sleep-wake spectrum. For example, S-EEG has contributed to clarify the semiology of sleep-related seizures as well as highlight the specific epileptogenic networks involved during ictal activity. Moreover, intracerebral EEG recordings derived from patients with epilepsy have been valuable to study sleep physiology and specific sleep disorders. The occasional co-occurrence of NREM-related parasomnias in epileptic patients undergoing S-EEG investigation has permitted the recordings of such events, highlighting the presence of local electrophysiological dissociated states and clarifying the underlying pathophysiological substrate of such NREM sleep disorders. Based on these recent advances, the authors review and summarize the current and relevant S-EEG literature on sleep-related hypermotor epilepsies and NREM-related parasomnias. Finally, novel data and future research hypothesis will be discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11571/1372171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 65
social impact