The suggestion has been made that polyamines may be involved in the control of cell death, since exceedingly high or low levels induce apoptosis in different cell systems. For a deeper insight into the relationship between apoptosis and polyamine metabolism, we investigated in vitro the effect on rat thymocytes of mitoguazone (MGBG, which inhibits S-adenosylmethionine decarboxylase, i. e. a key enzyme in the polyamine biosynthetic pathway). Thymocytes were selected as an especially suitable model system, since they undergo spontaneous apoptosis in vivo and can be easily induced to apoptose in vitro by etoposide, used here as an apoptogenic agent. MGBG protected thymocytes from both spontaneous and drug-induced apoptosis, and this protective effect was associated with a decrease in polyamine oxidase activity and total polyamine levels.
Administration of the antitumor drug mitoguazone protects normal thymocytes against spontaneous and etoposide-induced apoptosis
BOTTONE, MARIA GRAZIA;SOLDANI, CRISTIANA;PELLICCIARI, CARLO
2004-01-01
Abstract
The suggestion has been made that polyamines may be involved in the control of cell death, since exceedingly high or low levels induce apoptosis in different cell systems. For a deeper insight into the relationship between apoptosis and polyamine metabolism, we investigated in vitro the effect on rat thymocytes of mitoguazone (MGBG, which inhibits S-adenosylmethionine decarboxylase, i. e. a key enzyme in the polyamine biosynthetic pathway). Thymocytes were selected as an especially suitable model system, since they undergo spontaneous apoptosis in vivo and can be easily induced to apoptose in vitro by etoposide, used here as an apoptogenic agent. MGBG protected thymocytes from both spontaneous and drug-induced apoptosis, and this protective effect was associated with a decrease in polyamine oxidase activity and total polyamine levels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.