Intravascular stents are small tube-like structures expanded into stenotic arteries to restore blood flow perfusion to the downstream tissues. The stent expansion is an important factor to define the effectiveness of the surgical procedure: it depends on the stent geometry and includes large displacements and deformations, geometric and material non-linearity. Numerical analyses seem appropriate to study such a complex behaviour after a free stent expansion. In this study the finite element method (FEM) was applied to a new generation coronary stent. Results from computations were compared with those from a laboratory experiment in terms of radial expansion and elastic recoil. By means of a scanning electronic microscopy the area of plastic deformation were also detected and compared with those obtained in the numerical simulation. Matching between the different measurements was quite satisfactory even if some discrepancies were present due to the absence of the balloon in the numerical model.

A predictive study of the mechanical behaviour of coronary stents by computer modeling

AURICCHIO, FERDINANDO;
2005-01-01

Abstract

Intravascular stents are small tube-like structures expanded into stenotic arteries to restore blood flow perfusion to the downstream tissues. The stent expansion is an important factor to define the effectiveness of the surgical procedure: it depends on the stent geometry and includes large displacements and deformations, geometric and material non-linearity. Numerical analyses seem appropriate to study such a complex behaviour after a free stent expansion. In this study the finite element method (FEM) was applied to a new generation coronary stent. Results from computations were compared with those from a laboratory experiment in terms of radial expansion and elastic recoil. By means of a scanning electronic microscopy the area of plastic deformation were also detected and compared with those obtained in the numerical simulation. Matching between the different measurements was quite satisfactory even if some discrepancies were present due to the absence of the balloon in the numerical model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/137438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 191
  • ???jsp.display-item.citation.isi??? 133
social impact