In this paper we address the problem of stability of flows associated to a sequence of vector fields under minimal regularity requirements on the limit vector field, that is supposed to be a gradient. We apply this stability result to show the convergence of iterated compositions of optimal transport maps arising in the implicit time discretization (with respect to the Wasserstein distance) of nonlinear evolution equations of a diffusion type. Finally, we use these convergence results to study the gradient flow of a particular class of polyconvex functionals recently considered by Gangbo, Evans and Savin. We solve some open problems raised in their paper and obtain existence and uniqueness of solutions under weaker regularity requirements and with no upper bound on the jacobian determinant of the initial datum.

Stability of flows associated to gradient vector fields and convergence of iterated transport maps

AMBROSIO, LUIGI;LISINI, STEFANO;SAVARE', GIUSEPPE
2006-01-01

Abstract

In this paper we address the problem of stability of flows associated to a sequence of vector fields under minimal regularity requirements on the limit vector field, that is supposed to be a gradient. We apply this stability result to show the convergence of iterated compositions of optimal transport maps arising in the implicit time discretization (with respect to the Wasserstein distance) of nonlinear evolution equations of a diffusion type. Finally, we use these convergence results to study the gradient flow of a particular class of polyconvex functionals recently considered by Gangbo, Evans and Savin. We solve some open problems raised in their paper and obtain existence and uniqueness of solutions under weaker regularity requirements and with no upper bound on the jacobian determinant of the initial datum.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/137772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 18
social impact