Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as “holobionts”. We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont “Candidatus Pinguicoccus supinus” gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.

Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov

Serra V.;Castelli M.;Sassera D.;
2020-01-01

Abstract

Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as “holobionts”. We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont “Candidatus Pinguicoccus supinus” gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.
2020
Microbiology covers the biology and biochemistry of microorganisms, bacterial, viral, and parasitic, as well as the medical implications and treatments of the subset of these organisms known to cause disease in humans and/or animals. Biotechnology applications of microorganisms for basic science or clinical use are also covered. Resources that emphasize immune response to pathogens and its modulation by clinical intervention are excluded and are covered in the Immunology category.
Inglese
Internazionale
10
1
1
27
27
TARGETED OLIGONUCLEOTIDE PROBES; MULTIPLE SEQUENCE ALIGNMENT; SUBUNIT RIBOSOMAL-RNA; MOLECULAR PHYLOGENY; EUPLOTIDIUM-ITOI; POLYNUCLEOBACTER-NECESSARIUS; TETRAHYMENA-PYRIFORMIS; MITOCHONDRIAL GENOME; PARAMECIUM-BURSARIA; BACTERIAL DIVERSITY
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679464/
11
info:eu-repo/semantics/article
262
Serra, V.; Gammuto, L.; Nitla, V.; Castelli, M.; Lanzoni, O.; Sassera, D.; Bandi, C.; Sandeep, B. V.; Verni, F.; Modeo, L.; Petroni, G.
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1391716
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 35
social impact