The aim of this paper is to present several properties of the nonnegative weak solutions to a class of very singular equations whose prototype is ut=div(um−1|Du|p−2Du),p>1and3−p<2.Namely, we prove Llocr and Llocr−Lloc∞ estimates and Harnack estimates. Note that 3−p=m+p is a critical value: under this threshold the energy estimates hold with a reverse sign.

Regularity results for a class of doubly nonlinear very singular parabolic equations

Fornaro S.;Vespri V.
2021-01-01

Abstract

The aim of this paper is to present several properties of the nonnegative weak solutions to a class of very singular equations whose prototype is ut=div(um−1|Du|p−2Du),p>1and3−p<2.Namely, we prove Llocr and Llocr−Lloc∞ estimates and Harnack estimates. Note that 3−p=m+p is a critical value: under this threshold the energy estimates hold with a reverse sign.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1394215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact