The sulphation pattern of glycosaminoglycan (GAG) plays a critical role in biological functions of proteoglycans. In this study, we showed that decorins from different bovine tissues present specific sulphation pattern coupled with peculiar biological activity. In order to elucidate chemical structure of decorin glycosaminoglycan chains, we improved an electrophoretic method to analyse fluorescent disaccharides from dermatan/chondroitin sulphate GAG chains. The disaccharide separation is based on minigels, and this technique was able to define the polysaccharide chain composition in terms of sulphated and not sulphated disaccharides. This approach allowed not only the measurement of few picomoles of material, but it also permits a rapid qualitative analysis of the GAG chains. Data obtained by PAGEFS indicate that the sulphation pattern of GAG is tissue specific and this finding may explain the different binding properties to von Willebrand factor of decorins.

Decorin from different bovine tissues: study of glycosaminoglycan chain by PAGEFS

VIOLA, MANUELA;GUIDETTI, GIANNI FRANCESCO;TIRA, MARIA ENRICA;
2006-01-01

Abstract

The sulphation pattern of glycosaminoglycan (GAG) plays a critical role in biological functions of proteoglycans. In this study, we showed that decorins from different bovine tissues present specific sulphation pattern coupled with peculiar biological activity. In order to elucidate chemical structure of decorin glycosaminoglycan chains, we improved an electrophoretic method to analyse fluorescent disaccharides from dermatan/chondroitin sulphate GAG chains. The disaccharide separation is based on minigels, and this technique was able to define the polysaccharide chain composition in terms of sulphated and not sulphated disaccharides. This approach allowed not only the measurement of few picomoles of material, but it also permits a rapid qualitative analysis of the GAG chains. Data obtained by PAGEFS indicate that the sulphation pattern of GAG is tissue specific and this finding may explain the different binding properties to von Willebrand factor of decorins.
2006
Biochemistry & Biophysics focuses on the structure and chemistry of biomolecules and covers all aspects of basic biochemistry/biophysics, including molecular structure, enzyme kinetics and protein-protein interaction; this category also contains cross-disciplinary resources focused on a specific class of biological molecules, e.g., nucleic acids, steroids, magnesium, growth factors, free radicals, bio-membranes, and peptides. Excluded are resources dealing with the application of biochemical techniques to specific topics listed elsewhere in CC/LS. Resources with a strong emphasis on the integration of biochemical pathways (such as signal transduction or molecular motors) at the cellular level are placed in the Cell & Developmental Biology category.
Sì, ma tipo non specificato
Inglese
Internazionale
STAMPA
41
1
36
42
7
Proteoglycan; Glycosaminoglycan; Carbohydrate electrophoresis; Decorin
9
info:eu-repo/semantics/article
262
Viola, Manuela; Karousou Evgenia, G; Vigetti, Davide; Genasetti, Anna; Pallotti, Francesco; Guidetti, GIANNI FRANCESCO; Tira, MARIA ENRICA; De Luca, G...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/139929
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact