The challenging hypothesis of a “biphilic” (i.e., electrophilic vs nucleophilic) character for dioxirane reactivity, which envisages that electron-poor alkenes are attacked by dioxiranes in a nucleophilic fashion, could not be sustained experimentally. Rate data, which estimate Hammett “rho” values for the epoxidation of 3- or 4-substituted cinnamonitriles XâPhsCHdCHsCN, unequivocally allow one to establish that dioxiranes epoxidize electrophilically even alkenes carrying electron-withdrawing groups. The greater propensity of methyl(trifluoromethyl)dioxirane TFDO (1b) to act as an electrophilic oxidant with respect to dimethyldioxirane DDO (1a) parallels the cathode reduction potentials for the two dioxiranes, as measured by cyclic voltammetry. A simple FMO approach for alkene epoxidation is helpful to conceive a likely rationale for the greater oxidizing power of TFDO as compared to DDO.
Concerning the reactivity of dioxiranes. Observations fromexperiments and theory
GANDOLFI, REMO;
2008-01-01
Abstract
The challenging hypothesis of a “biphilic” (i.e., electrophilic vs nucleophilic) character for dioxirane reactivity, which envisages that electron-poor alkenes are attacked by dioxiranes in a nucleophilic fashion, could not be sustained experimentally. Rate data, which estimate Hammett “rho” values for the epoxidation of 3- or 4-substituted cinnamonitriles XâPhsCHdCHsCN, unequivocally allow one to establish that dioxiranes epoxidize electrophilically even alkenes carrying electron-withdrawing groups. The greater propensity of methyl(trifluoromethyl)dioxirane TFDO (1b) to act as an electrophilic oxidant with respect to dimethyldioxirane DDO (1a) parallels the cathode reduction potentials for the two dioxiranes, as measured by cyclic voltammetry. A simple FMO approach for alkene epoxidation is helpful to conceive a likely rationale for the greater oxidizing power of TFDO as compared to DDO.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.