Monoamine oxidase B (MAO B) is an outer mitochondrial membrane enzyme that catalyzes the oxidation of arylalkylamine neurotransmitters. The crystal structures of MAO B in complex with four of the N-propargylaminoindan class of MAO covalent inhibitors (rasagiline, N-propargyl-1(S)-aminoindan, 6-hydroxy-N-propargyl-1(R)-aminoindan, and N-methyl-N-propargyl-1(R)-aminoindan) have been determined at a resolution of better than 2.1 A. Rasagiline, 6-hydroxy-N-propargyl-1(R)-aminoindan, and N-methyl-N-propargyl-1(R)-aminoindan adopt essentially the same conformation with the extended propargyl chain covalently bound to the flavin and the indan ring located in the rear of the substrate cavity. N-Propargyl-1(S)-aminoindan binds with the indan ring in a flipped conformation with respect to the other inhibitors, which causes a slight movement of the Tyr326 side chain. Four ordered water molecules are an integral part of the active site and establish H-bond interactions to the inhibitor atoms. These structural studies may guide future drug design to improve selectivity and efficacy by introducing appropriate substituents on the rasagiline molecular scaffold.

Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class

BINDA, CLAUDIA;MATTEVI, ANDREA
2004-01-01

Abstract

Monoamine oxidase B (MAO B) is an outer mitochondrial membrane enzyme that catalyzes the oxidation of arylalkylamine neurotransmitters. The crystal structures of MAO B in complex with four of the N-propargylaminoindan class of MAO covalent inhibitors (rasagiline, N-propargyl-1(S)-aminoindan, 6-hydroxy-N-propargyl-1(R)-aminoindan, and N-methyl-N-propargyl-1(R)-aminoindan) have been determined at a resolution of better than 2.1 A. Rasagiline, 6-hydroxy-N-propargyl-1(R)-aminoindan, and N-methyl-N-propargyl-1(R)-aminoindan adopt essentially the same conformation with the extended propargyl chain covalently bound to the flavin and the indan ring located in the rear of the substrate cavity. N-Propargyl-1(S)-aminoindan binds with the indan ring in a flipped conformation with respect to the other inhibitors, which causes a slight movement of the Tyr326 side chain. Four ordered water molecules are an integral part of the active site and establish H-bond interactions to the inhibitor atoms. These structural studies may guide future drug design to improve selectivity and efficacy by introducing appropriate substituents on the rasagiline molecular scaffold.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/140901
Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus 196
  • ???jsp.display-item.citation.isi??? 185
social impact