The plasticity of synaptosomal non-mitochondrial ATPases was evaluated in cerebral cortex from 3-month-old normoxic rats and rats subjected to either mild or severe intermittent normobaric hypoxia [12 hr daily exposure to N2:O2 (90:10 or 91.5:8.5) for four weeks]. The activities of Na+, K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, Mg(2+)-ATPase, and Ca2+,Mg(2+)-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The evaluations were performed after a 4-week treatment with saline (controls) or alpha-adrenergic agents (delta-yohimbine, clonidine), a vasodilator compound (papaverine), and an oxygen-partial pressure increasing agent (almitrine). These treatments differently changed the adaptation to chronic intermittent hypoxia characterized by a decrease in the activity of Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase, and high-affinity Ca(2+)-ATPase, concomitant with a modification in the activity of Mg(2+)-ATPase supported in a different way by the enzymatic forms located into the synaptosomal plasma membranes and synaptic vesicles

Modifications by hypoxia and drug treatment of cerebral ATPase plasticity

BENZI, GIAN MARTINO;GORINI, ANTONELLA;VILLA, ROBERTO FEDERICO
1994-01-01

Abstract

The plasticity of synaptosomal non-mitochondrial ATPases was evaluated in cerebral cortex from 3-month-old normoxic rats and rats subjected to either mild or severe intermittent normobaric hypoxia [12 hr daily exposure to N2:O2 (90:10 or 91.5:8.5) for four weeks]. The activities of Na+, K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, Mg(2+)-ATPase, and Ca2+,Mg(2+)-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The evaluations were performed after a 4-week treatment with saline (controls) or alpha-adrenergic agents (delta-yohimbine, clonidine), a vasodilator compound (papaverine), and an oxygen-partial pressure increasing agent (almitrine). These treatments differently changed the adaptation to chronic intermittent hypoxia characterized by a decrease in the activity of Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase, and high-affinity Ca(2+)-ATPase, concomitant with a modification in the activity of Mg(2+)-ATPase supported in a different way by the enzymatic forms located into the synaptosomal plasma membranes and synaptic vesicles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/141067
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact