The age-dependent modifications of synaptosomal plasma membrane protein composition in three different rat brain regions (cerebral cortex, cerebellum and striatum) at various ages (4, 12 and 24 months) were studied. The proteins were separated by gel-electrophoresis and the quantity of the different polypeptides was determined densitometrically from the stained gels. In the three brain regions examined several age-related modifications in the amount of the synaptosomal plasma membrane proteins were observed. In particular a significant decrease in the content of some synaptosomal plasma membrane proteins at 24 months of age was found. The age-related modifications in the protein composition of synaptosomal plasma membrane may cause changes in many brain functions, such as neurotransmission, ionic transport and enzyme activities. Particularly interesting is the decrease of a protein with 18 kDa mol. wt. This protein has been identified as calmodulin by immunoblotting assay. The decrease in the amount of this protein may be correlated to the impairment of several Ca(2+)-requiring processes in the aging brain

Modifications of synaptosomal plasma membrane protein composition in various brain regions during aging

VILLA, ROBERTO FEDERICO;GORINI, ANTONELLA;
1992-01-01

Abstract

The age-dependent modifications of synaptosomal plasma membrane protein composition in three different rat brain regions (cerebral cortex, cerebellum and striatum) at various ages (4, 12 and 24 months) were studied. The proteins were separated by gel-electrophoresis and the quantity of the different polypeptides was determined densitometrically from the stained gels. In the three brain regions examined several age-related modifications in the amount of the synaptosomal plasma membrane proteins were observed. In particular a significant decrease in the content of some synaptosomal plasma membrane proteins at 24 months of age was found. The age-related modifications in the protein composition of synaptosomal plasma membrane may cause changes in many brain functions, such as neurotransmission, ionic transport and enzyme activities. Particularly interesting is the decrease of a protein with 18 kDa mol. wt. This protein has been identified as calmodulin by immunoblotting assay. The decrease in the amount of this protein may be correlated to the impairment of several Ca(2+)-requiring processes in the aging brain
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/141073
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact