Aromatic hydrocarbons are some of the most elementary feedstock chemicals, produced annually on a million metric ton scale, and are used in the production of polymers, paints, agrochemicals and pharmaceuticals. Dearomatization reactions convert simple, readily available arenes into more complex molecules with broader potential utility, however, despite substantial progress and achievements in this field, there are relatively few methods for the dearomatization of simple arenes that also selectively introduce functionality. Here we describe a new dearomatization process that involves visible-light activation of small heteroatom-containing organic molecules-arenophiles-that results in their para-cycloaddition with a variety of aromatic compounds. The approach uses N-N-arenophiles to enable dearomative dihydroxylation and diaminodihydroxylation of simple arenes. This strategy provides direct and selective access to highly functionalized cyclohexenes and cyclohexadienes and is orthogonal to existing chemical and biological dearomatization processes. Finally, we demonstrate the synthetic utility of this strategy with the concise synthesis of several biologically active compounds and natural products.

Dearomative dihydroxylation with arenophiles

Sarlah D
2016-01-01

Abstract

Aromatic hydrocarbons are some of the most elementary feedstock chemicals, produced annually on a million metric ton scale, and are used in the production of polymers, paints, agrochemicals and pharmaceuticals. Dearomatization reactions convert simple, readily available arenes into more complex molecules with broader potential utility, however, despite substantial progress and achievements in this field, there are relatively few methods for the dearomatization of simple arenes that also selectively introduce functionality. Here we describe a new dearomatization process that involves visible-light activation of small heteroatom-containing organic molecules-arenophiles-that results in their para-cycloaddition with a variety of aromatic compounds. The approach uses N-N-arenophiles to enable dearomative dihydroxylation and diaminodihydroxylation of simple arenes. This strategy provides direct and selective access to highly functionalized cyclohexenes and cyclohexadienes and is orthogonal to existing chemical and biological dearomatization processes. Finally, we demonstrate the synthetic utility of this strategy with the concise synthesis of several biologically active compounds and natural products.
File in questo prodotto:
File Dimensione Formato  
Manuscript dihydroxylation.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 854.21 kB
Formato Adobe PDF
854.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1412414
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 136
  • ???jsp.display-item.citation.isi??? 131
social impact